With the development circular economy, the use of agricultural waste to prepare biomass materials to remove pollutants has become a research hotspot. In this study, sunflower straw activated carbon (SSAC) was prepared...With the development circular economy, the use of agricultural waste to prepare biomass materials to remove pollutants has become a research hotspot. In this study, sunflower straw activated carbon (SSAC) was prepared by the one-step activation method, with sunflower straw (SS) used as the raw material and H3PO4 used as the activator. Four types of SSAC were prepared with impregnation ratios (weight of SS to weight of H3PO4) of 1:1, 1:2, 1:3, and 1:5, corresponding to SSAC1, SSAC2, SSAC3, and SSAC4, respectively. The adsorption process of acid fuchsin (AF) in water using the four types of SSAC was studied. The results showed that the impregnation ratio significantly affected the structure of the materials. The increase in the impregnation ratio increased the specific surface area and pore volume of SSAC and improved the adsorption capacity of AF. However, an impregnation ratio that was too large led to a decrease in specific surface area. SSAC3, with an impregnation ratio of 1:3, had the largest specific surface area (1 794.01 m2/g), and SSAC4, with an impregnation ratio of 1:5, exhibited the smallest microporosity (0.052 7 cm3/g) and the largest pore volume (2.549 cm3/g). The adsorption kinetics of AF using the four types of SSAC agreed with the quasi-second-order adsorption kinetic model. The Langmuir isotherm model was suitable to describe SSAC3 and SSAC4, and the Freundlich isotherm model was appropriate to describe SSAC1 and SSAC2. The result of thermodynamics showed that the adsorption process was spontaneous and endothermic. At 303 K, SSAC4 showed a removal rate of 97.73% for 200-mg/L AF with a maximum adsorption capacity of 2 763.36 mg/g, the highest among the four types of SSAC. This study showed that SAAC prepared by the H3PO4-based one-step activation method is a green and efficient carbon material and has significant application potential for the treatment of dye-containing wastewater.展开更多
The present work deals with the preparation and characterization of activated carbons from the bark of the asparagus palm (Laccosperma robustum) by chemical activation with phosphoric acid and potassium hydroxide. The...The present work deals with the preparation and characterization of activated carbons from the bark of the asparagus palm (Laccosperma robustum) by chemical activation with phosphoric acid and potassium hydroxide. The process was optimized on the basis of the analysis of the iodine number, methylene blue number and activated carbons yield as a function of the preparation parameters (concentration of the activating agents and the pyrolysis temperature). It emerges that the pyrolysis temperature and the concentration of activating agents influence the activated carbons preparation process. Their values were 500°C and 20% respectively for activated carbon with H<sub>3</sub>PO<sub>4</sub> (ACP) and 700°C and 1.5% for activated carbon with KOH (ACK). The iodine numbers obtained were 850.26 mg/g for ACP and 865.49 mg/g for ACK. The methylene blue numbers obtained were 149.35 mg/g for ACP and 149.25 mg/g for ACK. The activated carbons yields obtained were 25% for ACP and 5.9% for ACK. The activated carbons prepared under optimal conditions have shown the pH of zero-point charge (pHzpc) of 4.4 and 7.0 for ACP for ACK respectively. The determination of the surface functions revealed that ACP had a strong acidic character while ACK had neutral character. The Fourier transformed infrared spectroscopy also showed the presence of different functional groups on the surface of the precursor and activated carbons.展开更多
In this paper, a pulsed discharge plasma (PDP) system with a multi-needle-to-plate electrodes geometry was set up to investigate the regeneration of acid orange 7 (AO7) exhausted granular activated carbon (GAC)....In this paper, a pulsed discharge plasma (PDP) system with a multi-needle-to-plate electrodes geometry was set up to investigate the regeneration of acid orange 7 (AO7) exhausted granular activated carbon (GAC). Regeneration of GAC was studied under different conditions of peak pulse discharge voltage and water pH, as well as the modification effect of GAC by the pulse discharge process, to figure out the regeneration efficiency and the change of the GAC structure by the PDP treatment. The obtained results showed that there was an appropriate peak pulse voltage and an optimal initial pH value of the solution for GAC regeneration. Analyses of scanning electron microscope (SEM), Boehm titration, Brunauer-Emmett-Teller (BET), Horvath-Kawazoe (HK), and X-ray Diffraction (XRD) showed that there were more mesopore and macropore in the regenerated GAC and the structure turned smoother with the increase of discharge voltage; the amount of acidic functional groups on the GAC surface increased while the amount of basic functional groups decreased after the regeneration process. From the result of the XRD analysis, there were no new substances produced on the GAC after PDP treatment.展开更多
The dynamic competitive adsorption behaviors of different binary organic vapor mixtures on ACF-Ps under different operation conditions were investigated by gas chromatography in this paper. The studied mixtures includ...The dynamic competitive adsorption behaviors of different binary organic vapor mixtures on ACF-Ps under different operation conditions were investigated by gas chromatography in this paper. The studied mixtures included benzene/toluene, toluene/xylene, benzene/isopropylbenzene, ethyl acetate/toluene and benzene/ethyl acetate. Experimental results show that various ACF-Ps, as with ACF-W, can remove both vapors in binary vapor mixtures with over 99% of removal efficiency before the breakthrough point of the more weakly adsorbed vapor. In dynamic competitive adsorption, the more weakly adsorbed vapor not only penetrates early, but also will be displaced and desorbed consequently by stronger adsorbate and therefore produces a rolling up in the breakthrough curve. The ACF-Ps prepared at different temperatures have somewhat different adsorption selectivity. The feed concentration ratio of vapors, the length/diameter ratio and the thick of bed have effect on competitive adsorption. The competitive adsorption ability of a vapor is mainly related to its boiling point. Usually, the higher the boiling point, the stronger the vapor adsorbed on ACF-P.展开更多
The objective of this study was to investigate the feasibility of using a granular activated carbon-biofilm configured packed column system in the deeolodzation of azo dye Acid Orange 7-containing wastewater.The Acid ...The objective of this study was to investigate the feasibility of using a granular activated carbon-biofilm configured packed column system in the deeolodzation of azo dye Acid Orange 7-containing wastewater.The Acid Orange 7-degrading microbial from anaerobic sequencing batch reactor which treating the azo dye-containing wastewater for more than 200 d was immobilized on spent granular activated carbon(GAC)through attachment.The GAC-biofilm configured packed column system showed the ability to decolorize 10...展开更多
[Objective] The aim was to study on the high-valued utilization of China Fir sawdust extracted essential oil.[Method] In the field of fir essential oil extraction,the processed China fir sawdust was used to prepare lo...[Objective] The aim was to study on the high-valued utilization of China Fir sawdust extracted essential oil.[Method] In the field of fir essential oil extraction,the processed China fir sawdust was used to prepare low-valued products.The high-valued utilization of China fir sawdust extracted essential oil(CFSEEO),namely as a precursor to prepare granular activated carbons(GACs),was attempted.The materials were characterized by ultimate analysis,SEM and XRD.[Rusult] A butane working capacity(BWC)of 14.3 g/100 ml was obtained by using the GACs with apparent density of 0.25 g/ml.It was available to introduce the technology of extracting essential oil from the China fir sawdust(CFS)in the industrial production process of activated carbons with high BWC(12.0-16.5 g/100 ml)and high surface area(2 000-2 630 m2/g)using phosphoric acid based on previous studies of the authors.[Conclusion] The resulting carbon prepared with the raw materials containing lower moisture exhibited a better property on n-butane adsorption.展开更多
In this article, a facile two-step activation method, coupled with phosphoric acid(H3PO4)-assisted pretreatment and followed KOH activation,was reported for constructing hierarchical porous carbon(HPC) materials deriv...In this article, a facile two-step activation method, coupled with phosphoric acid(H3PO4)-assisted pretreatment and followed KOH activation,was reported for constructing hierarchical porous carbon(HPC) materials derived from lignin. The introduction of H3PO4, cross-linked with lignin sources generated phosphate(and/or polyphosphate) ester groups throughout the lignin structure, which endowed the pre-activated intermediate char(IC)with a hierarchical porous structure. Such phosphate esters contributed to the multi-scale pore structure within the pre-activated IC, which was beneficial for the uniform distribution and impregnation of subsequent KOH activators,thus leading to the formation of HPC materials. The as-prepared HPC exhibited a large specific surface area(SSA) of 1345.1 m^2/g, which ensures the accessibility of the ion diffusion pathways. The supercapacitors integrated with HPC delivered a high specific capacitance of 241 F/g(in a threeelectrode system) and outstanding rate capability with an 80.9% capacitance retention from 0.5 A/g to an ultra-high current density of 50 A/g.展开更多
Metal ion contamination of drinking water and waste water, especially with heavy metal ion such as lead, is a serious and ongoing problem. In this work, activated carbon prepared from peanut shell (PAC) was used for...Metal ion contamination of drinking water and waste water, especially with heavy metal ion such as lead, is a serious and ongoing problem. In this work, activated carbon prepared from peanut shell (PAC) was used for the removal of Pb^2+ from aqueous solution. The impacts of the Pb25 adsorption capacities of the acid-modified carbons oxidized with HNO3 were also investigated. The surface functional groups of PAC were confirmed by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Boehm titration. The textural properties (surface area, total pore volume) were evaluated from the nitrogen adsorption isotherm at 77 K. The experimental results presented indicated that the adsorption data fitted better with the Langmuir adsorption model. A comparative study with a commercial granular activated carbon (GAC) showed that PAC was 10.3 times more efficient compared to GAC based on Langmuir maximum adsorption capacity. Further analysis results by the Langmuir equation showed that HNO3 [20% (by mass)] modified PAC has larger adsorption capacity of Pb^2+ from aqueous solution (as much as 35.5 mg·g^-1). The adsorption capacity enhancement ascribed to pore widening, increased cation-exchange capacity by oxygen groups, and the promoted hydrophilicity of the carbon surface.展开更多
A series of Ni-La-Mg catalyst samples were prepared by citric acid complex method, and carbon nanotubes were synthesized by catalytic decomposition of CH4 on these catalysts. The effects of the citric acid concentrati...A series of Ni-La-Mg catalyst samples were prepared by citric acid complex method, and carbon nanotubes were synthesized by catalytic decomposition of CH4 on these catalysts. The effects of the citric acid concentration and the activation temperature on catalytic activity were investigated by CO adsorption, TEM and XRD techniques. The experimental results showed that the particle size of the catalysts prepared through gel auto-combustion varied with the concentration of citric acid. Therefore carbon nanotubes with different diameters were obtained correspondingly. The effect of activation temperature on the activity of catalyst was negligible from 500 to 700 ℃, but it became pronounced at lower or higher temperatures.展开更多
The objective of this work is to prepare one of the best activated carbon (CA) based on wood (Acacia auriculeaformis). The chemical activation method was used for varying the chemical agent namely phosphoric acid H3PO...The objective of this work is to prepare one of the best activated carbon (CA) based on wood (Acacia auriculeaformis). The chemical activation method was used for varying the chemical agent namely phosphoric acid H3PO4 (CAA), sodium hydroxide NaOH (CAB), and sodium chloride NaCl (CAS). The physico-chemical analysis of the three activated carbons indicated that, under the conditions of preparation, the activated carbons possess activation efficiencies lower than 50% (41.81% for CAA, 26.25% for CAB and 48.87% for CAS), low ash content (CAA: 5.00%, CAB: 14.90 and CAS: 6.60%) and iodine values ranging from 190.35 mg/g to 380.71 mg/g, suggesting that the good quality of the prepared activated carbon. The surface functional groups using Boehm test and the zero point charge (pHZPC) methods confirmed the acidic, basic and neutral character for CAA, CAB and CAS respectively (CAA: pHZPC = 4.8, CAB: pHZPC = 8.2, CAS: pHZPC = 6.8). The surface specific areas were determined through the liquid phase adsorption of acetic acid and methylene blue using the Langmuir method and BET analysis. Also, the porosity was determined. The BET surface areas of CAA, CAB and CAS were respectively 561.60 m2/g, 265.00 m2/g and 395.40 m2/g. The influence of chemical activation agent on pores formation was confirmed by scanning electron microscopic (SEM) analysis. CAA was selected as the best activated carbon because of its good surface area and good pore volume compared to those found in the literature. Therefore, its application as an adsorbent for effluents treatment could be explored. In addition, the best activating agent for coal from Acacia auriculeaformis was found to be phosphoric acid.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.41865010)the 2020 Leading Talents of Young Science and Technology Talents in Colleges and Universities of the Inner Mongolia Autonomous Region(Grant No.NJYT-20-A04)the Project of the 10th Group of Grassland Talents of the Inner Mongolia Autonomous Region,the 2022 Inner Mongolia Outstanding Youth Fund Project,and the Key Research and Development and Achievement Transformation Program of the Inner Mongolia Autonomous Region in 2022(Grant No.2022YFHH0035).
文摘With the development circular economy, the use of agricultural waste to prepare biomass materials to remove pollutants has become a research hotspot. In this study, sunflower straw activated carbon (SSAC) was prepared by the one-step activation method, with sunflower straw (SS) used as the raw material and H3PO4 used as the activator. Four types of SSAC were prepared with impregnation ratios (weight of SS to weight of H3PO4) of 1:1, 1:2, 1:3, and 1:5, corresponding to SSAC1, SSAC2, SSAC3, and SSAC4, respectively. The adsorption process of acid fuchsin (AF) in water using the four types of SSAC was studied. The results showed that the impregnation ratio significantly affected the structure of the materials. The increase in the impregnation ratio increased the specific surface area and pore volume of SSAC and improved the adsorption capacity of AF. However, an impregnation ratio that was too large led to a decrease in specific surface area. SSAC3, with an impregnation ratio of 1:3, had the largest specific surface area (1 794.01 m2/g), and SSAC4, with an impregnation ratio of 1:5, exhibited the smallest microporosity (0.052 7 cm3/g) and the largest pore volume (2.549 cm3/g). The adsorption kinetics of AF using the four types of SSAC agreed with the quasi-second-order adsorption kinetic model. The Langmuir isotherm model was suitable to describe SSAC3 and SSAC4, and the Freundlich isotherm model was appropriate to describe SSAC1 and SSAC2. The result of thermodynamics showed that the adsorption process was spontaneous and endothermic. At 303 K, SSAC4 showed a removal rate of 97.73% for 200-mg/L AF with a maximum adsorption capacity of 2 763.36 mg/g, the highest among the four types of SSAC. This study showed that SAAC prepared by the H3PO4-based one-step activation method is a green and efficient carbon material and has significant application potential for the treatment of dye-containing wastewater.
文摘The present work deals with the preparation and characterization of activated carbons from the bark of the asparagus palm (Laccosperma robustum) by chemical activation with phosphoric acid and potassium hydroxide. The process was optimized on the basis of the analysis of the iodine number, methylene blue number and activated carbons yield as a function of the preparation parameters (concentration of the activating agents and the pyrolysis temperature). It emerges that the pyrolysis temperature and the concentration of activating agents influence the activated carbons preparation process. Their values were 500°C and 20% respectively for activated carbon with H<sub>3</sub>PO<sub>4</sub> (ACP) and 700°C and 1.5% for activated carbon with KOH (ACK). The iodine numbers obtained were 850.26 mg/g for ACP and 865.49 mg/g for ACK. The methylene blue numbers obtained were 149.35 mg/g for ACP and 149.25 mg/g for ACK. The activated carbons yields obtained were 25% for ACP and 5.9% for ACK. The activated carbons prepared under optimal conditions have shown the pH of zero-point charge (pHzpc) of 4.4 and 7.0 for ACP for ACK respectively. The determination of the surface functions revealed that ACP had a strong acidic character while ACK had neutral character. The Fourier transformed infrared spectroscopy also showed the presence of different functional groups on the surface of the precursor and activated carbons.
基金supported by National Natural Science Foundation of China(No.21207052)China Postdoctoral Science Foundation(No.20110491353)Jiangsu Planned Projects for Postdoctoral Research Funds,China(No.1102116C)
文摘In this paper, a pulsed discharge plasma (PDP) system with a multi-needle-to-plate electrodes geometry was set up to investigate the regeneration of acid orange 7 (AO7) exhausted granular activated carbon (GAC). Regeneration of GAC was studied under different conditions of peak pulse discharge voltage and water pH, as well as the modification effect of GAC by the pulse discharge process, to figure out the regeneration efficiency and the change of the GAC structure by the PDP treatment. The obtained results showed that there was an appropriate peak pulse voltage and an optimal initial pH value of the solution for GAC regeneration. Analyses of scanning electron microscope (SEM), Boehm titration, Brunauer-Emmett-Teller (BET), Horvath-Kawazoe (HK), and X-ray Diffraction (XRD) showed that there were more mesopore and macropore in the regenerated GAC and the structure turned smoother with the increase of discharge voltage; the amount of acidic functional groups on the GAC surface increased while the amount of basic functional groups decreased after the regeneration process. From the result of the XRD analysis, there were no new substances produced on the GAC after PDP treatment.
基金supported by Major Natural Science Foundation of Guangdong Provincethe Trans-century Training Programmed Foundation for the Talents of the State Education Ministry of Chinaand the Foundation for the Key Teachers in Chinese University
文摘The dynamic competitive adsorption behaviors of different binary organic vapor mixtures on ACF-Ps under different operation conditions were investigated by gas chromatography in this paper. The studied mixtures included benzene/toluene, toluene/xylene, benzene/isopropylbenzene, ethyl acetate/toluene and benzene/ethyl acetate. Experimental results show that various ACF-Ps, as with ACF-W, can remove both vapors in binary vapor mixtures with over 99% of removal efficiency before the breakthrough point of the more weakly adsorbed vapor. In dynamic competitive adsorption, the more weakly adsorbed vapor not only penetrates early, but also will be displaced and desorbed consequently by stronger adsorbate and therefore produces a rolling up in the breakthrough curve. The ACF-Ps prepared at different temperatures have somewhat different adsorption selectivity. The feed concentration ratio of vapors, the length/diameter ratio and the thick of bed have effect on competitive adsorption. The competitive adsorption ability of a vapor is mainly related to its boiling point. Usually, the higher the boiling point, the stronger the vapor adsorbed on ACF-P.
文摘The objective of this study was to investigate the feasibility of using a granular activated carbon-biofilm configured packed column system in the deeolodzation of azo dye Acid Orange 7-containing wastewater.The Acid Orange 7-degrading microbial from anaerobic sequencing batch reactor which treating the azo dye-containing wastewater for more than 200 d was immobilized on spent granular activated carbon(GAC)through attachment.The GAC-biofilm configured packed column system showed the ability to decolorize 10...
基金Supported by "11th five year" National Science and Technology Support Project Grants(2009BADB1B03)Forestry Public Welfare Industry Special(201004051)
文摘[Objective] The aim was to study on the high-valued utilization of China Fir sawdust extracted essential oil.[Method] In the field of fir essential oil extraction,the processed China fir sawdust was used to prepare low-valued products.The high-valued utilization of China fir sawdust extracted essential oil(CFSEEO),namely as a precursor to prepare granular activated carbons(GACs),was attempted.The materials were characterized by ultimate analysis,SEM and XRD.[Rusult] A butane working capacity(BWC)of 14.3 g/100 ml was obtained by using the GACs with apparent density of 0.25 g/ml.It was available to introduce the technology of extracting essential oil from the China fir sawdust(CFS)in the industrial production process of activated carbons with high BWC(12.0-16.5 g/100 ml)and high surface area(2 000-2 630 m2/g)using phosphoric acid based on previous studies of the authors.[Conclusion] The resulting carbon prepared with the raw materials containing lower moisture exhibited a better property on n-butane adsorption.
基金supported by the Fundamental Research Funds for the Central Universities(BLX201823)Beijing Forestry University Outstanding Young Talent Cultivation Project(2019JQ03017)Beijing Municipal Natural Science Foundation(6182031).
文摘In this article, a facile two-step activation method, coupled with phosphoric acid(H3PO4)-assisted pretreatment and followed KOH activation,was reported for constructing hierarchical porous carbon(HPC) materials derived from lignin. The introduction of H3PO4, cross-linked with lignin sources generated phosphate(and/or polyphosphate) ester groups throughout the lignin structure, which endowed the pre-activated intermediate char(IC)with a hierarchical porous structure. Such phosphate esters contributed to the multi-scale pore structure within the pre-activated IC, which was beneficial for the uniform distribution and impregnation of subsequent KOH activators,thus leading to the formation of HPC materials. The as-prepared HPC exhibited a large specific surface area(SSA) of 1345.1 m^2/g, which ensures the accessibility of the ion diffusion pathways. The supercapacitors integrated with HPC delivered a high specific capacitance of 241 F/g(in a threeelectrode system) and outstanding rate capability with an 80.9% capacitance retention from 0.5 A/g to an ultra-high current density of 50 A/g.
文摘Metal ion contamination of drinking water and waste water, especially with heavy metal ion such as lead, is a serious and ongoing problem. In this work, activated carbon prepared from peanut shell (PAC) was used for the removal of Pb^2+ from aqueous solution. The impacts of the Pb25 adsorption capacities of the acid-modified carbons oxidized with HNO3 were also investigated. The surface functional groups of PAC were confirmed by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Boehm titration. The textural properties (surface area, total pore volume) were evaluated from the nitrogen adsorption isotherm at 77 K. The experimental results presented indicated that the adsorption data fitted better with the Langmuir adsorption model. A comparative study with a commercial granular activated carbon (GAC) showed that PAC was 10.3 times more efficient compared to GAC based on Langmuir maximum adsorption capacity. Further analysis results by the Langmuir equation showed that HNO3 [20% (by mass)] modified PAC has larger adsorption capacity of Pb^2+ from aqueous solution (as much as 35.5 mg·g^-1). The adsorption capacity enhancement ascribed to pore widening, increased cation-exchange capacity by oxygen groups, and the promoted hydrophilicity of the carbon surface.
基金National Nature Science Foundation of China and Science and Technology Bureau of Jiangxi province
文摘A series of Ni-La-Mg catalyst samples were prepared by citric acid complex method, and carbon nanotubes were synthesized by catalytic decomposition of CH4 on these catalysts. The effects of the citric acid concentration and the activation temperature on catalytic activity were investigated by CO adsorption, TEM and XRD techniques. The experimental results showed that the particle size of the catalysts prepared through gel auto-combustion varied with the concentration of citric acid. Therefore carbon nanotubes with different diameters were obtained correspondingly. The effect of activation temperature on the activity of catalyst was negligible from 500 to 700 ℃, but it became pronounced at lower or higher temperatures.
文摘The objective of this work is to prepare one of the best activated carbon (CA) based on wood (Acacia auriculeaformis). The chemical activation method was used for varying the chemical agent namely phosphoric acid H3PO4 (CAA), sodium hydroxide NaOH (CAB), and sodium chloride NaCl (CAS). The physico-chemical analysis of the three activated carbons indicated that, under the conditions of preparation, the activated carbons possess activation efficiencies lower than 50% (41.81% for CAA, 26.25% for CAB and 48.87% for CAS), low ash content (CAA: 5.00%, CAB: 14.90 and CAS: 6.60%) and iodine values ranging from 190.35 mg/g to 380.71 mg/g, suggesting that the good quality of the prepared activated carbon. The surface functional groups using Boehm test and the zero point charge (pHZPC) methods confirmed the acidic, basic and neutral character for CAA, CAB and CAS respectively (CAA: pHZPC = 4.8, CAB: pHZPC = 8.2, CAS: pHZPC = 6.8). The surface specific areas were determined through the liquid phase adsorption of acetic acid and methylene blue using the Langmuir method and BET analysis. Also, the porosity was determined. The BET surface areas of CAA, CAB and CAS were respectively 561.60 m2/g, 265.00 m2/g and 395.40 m2/g. The influence of chemical activation agent on pores formation was confirmed by scanning electron microscopic (SEM) analysis. CAA was selected as the best activated carbon because of its good surface area and good pore volume compared to those found in the literature. Therefore, its application as an adsorbent for effluents treatment could be explored. In addition, the best activating agent for coal from Acacia auriculeaformis was found to be phosphoric acid.