We present a detailed study on the magnetic coercivity of Co/CoO-MgO core-shell systems, which exhibits a large exchange bias due to an increase of the uncompensated spin density at the interface between the CoO shell...We present a detailed study on the magnetic coercivity of Co/CoO-MgO core-shell systems, which exhibits a large exchange bias due to an increase of the uncompensated spin density at the interface between the CoO shell and the metallic Co core by replacing Co by Mg within the CoO shell. We find a large magnetic coercivity of 7120 Oe around the electrical percolation threshold of the Co/CoO core/shell particles, while samples with a smaller or larger Co metal volume fraction show a considerably smaller coercivity. Thus, this study may lead to a route to improving the magnetic properties of artificial magnetic material in view of potential applications.展开更多
Prx(Co40Ag60)100-x (x=0, 0.5, 1, 1.5, 2, 3) granular films have been prepared by DC magneto controlled sputtering method. The XRD data indicated that Pr element favors the (111) plane preferential orientation. M...Prx(Co40Ag60)100-x (x=0, 0.5, 1, 1.5, 2, 3) granular films have been prepared by DC magneto controlled sputtering method. The XRD data indicated that Pr element favors the (111) plane preferential orientation. Magnetic measurements indicate that the average size of magnetic particles decreases as Pr content increases. For relatively low addition of Pr to CoAg granular films, Pr element can enhance GMR value and a peak value of about -14.3% is obtained at x=1.展开更多
Cux(Cu2O)1-x(0.09 x 1.00) granular films with thickness about 280 nm have been fabricated by direct current reactive magnetron sputtering. The atomic ratio x can be controlled by the oxygen flow rate during Cux(C...Cux(Cu2O)1-x(0.09 x 1.00) granular films with thickness about 280 nm have been fabricated by direct current reactive magnetron sputtering. The atomic ratio x can be controlled by the oxygen flow rate during Cux(Cu2O)1-x deposition. Room-temperature ferromagnetism(FM) is found in all of the samples. The saturated magnetization increases at first and then decreases with the decrease of x. The photoluminescence spectra show that the magnetization is closely correlated with the Cu vacancies in the Cux(Cu2O)1-x granular films. Fundamentally, the FM could be understood by the Stoner model based on the charge transfer mechanism. These results may provide solid evidence and physical insights on the origin of FM in the Cu2O-based oxides diluted magnetic semiconductors, especially for systems without intentional magnetic atom doping.展开更多
The quantum phenomenological model has been proposed to investigate the magnetic property of nanometer magnetic granular film in an applied magnetic field.The magnetoresistance of the granular films with two distinct ...The quantum phenomenological model has been proposed to investigate the magnetic property of nanometer magnetic granular film in an applied magnetic field.The magnetoresistance of the granular films with two distinct magnetic phases has been calculated by using Born approximation.The results show that the average scattering cross section of the magnetic cluster decreases with the increasing number n of the atom.The origin of the giant magnetoresistance comes from the spin dependent scattering between conduction electrons and magnetic granules and the field dependence of magnetoresistance and the quadratic relation of magnetoresistance on the rate of magnetic moment are in good agreement with the experiments reported.展开更多
By finely controlling the deposition parameters in the pulsed electron deposition process, granular La 2/3 Ca 1/3 MnO 3 (LCMO) film was grown on silicon substrates. The substrate temperature, ambient pressure in the...By finely controlling the deposition parameters in the pulsed electron deposition process, granular La 2/3 Ca 1/3 MnO 3 (LCMO) film was grown on silicon substrates. The substrate temperature, ambient pressure in the deposition chamber and acceleration potential for the electron beam were all found to affect the grain size of the film, resulting in different morphologies of the samples. Transport properties of the obtained granular films, especially the magnetoresistance (MR), were studied. Prominent low-field MR was observed in all samples, indicating the forming of grain boundaries in the sample. The low-field MR show great sensitive to the morphology evolution, which reaches the highest value of about 40% for the sample with the grain size of about 250 nm. More interestingly, positive-MR (p-MR) was also detected above 300 K when low magnetic field applying, whereas it disappeared with higher magnetic field applied up to 1.5 and 2 Tesla. Instead of the spin- polarized tunneling process being commonly regarded as a responsible reason, lattice mismatch between LCMO film and silicon substrate appears to be the origin of the p-MR展开更多
In this paper,we present a review of electron transport properties of magnetic granular films.Magnetic granular films are nanocomposite materials which consist of magnetic nanoparticles embedded in a nonmagnetic matri...In this paper,we present a review of electron transport properties of magnetic granular films.Magnetic granular films are nanocomposite materials which consist of magnetic nanoparticles embedded in a nonmagnetic matrix or assembling of magnetic nanoparticles.According to the style of the nonmagnetic matrix,microstructure and the electron transport mechanism of the films,the magnetic granular films were divided into three groups:(1) magnetic metal-metal granular films,(2) magnetic metal-insulator granular films and(3) magnetic nanocluster-assembled granular films.Moreover,we also systematically review the magnetic properties,transport properties and magnetoresistance effect of size-monodispersed Co and Fe nanocluster-assembled films.展开更多
Amorphous CoxC1-x granular films were prepared on n-Si(100) substrate by dc magnetron sputtering. The effects of Co con- centration, film thickness and annealing temperature on the magnetic properties and magnetores...Amorphous CoxC1-x granular films were prepared on n-Si(100) substrate by dc magnetron sputtering. The effects of Co con- centration, film thickness and annealing temperature on the magnetic properties and magnetoresistance (MR) were investigated After annealing at 500℃ for 0.5 hour, the Co(002) peak of the CoxC1-x(x〉2.5 at.%) films was observed, but cracks appeared in the films. Saturation magnetization Ms increased steadily with the increase of Co concentration from 2.5 at.% to 50 at.% and also increased with annealing temperature from room temperature to 400℃. The coercivity of CoxC1-x films was less than 180 Oe. The as-deposited Co2.5C97.5 granular films with 80 nm thickness showed a highly positive MR, up to 15.5% at a magnetic field of 0.8 T, observed at T=300 K when the external magnetic field was perpendicular to the film surface. With increasing film thickness and annealing temperature, the value of MR was found to decrease gradually and changed from positive to neg- ative. The MR effect of the CoxC1-x granular films can be explained by p-n heterojunction theory and interface scattering ef- fect.展开更多
The effect of the volume fraction of ferromagnetic metal (x) in (Ni75Fe25)x(ZnO)1-x nanogranular thin films on microstructural, soft-magnetic, and high-frequency properties was investigated. Good soft-magnetic p...The effect of the volume fraction of ferromagnetic metal (x) in (Ni75Fe25)x(ZnO)1-x nanogranular thin films on microstructural, soft-magnetic, and high-frequency properties was investigated. Good soft-magnetic properties were obtained in a broad x range, with 0.55 〈 x 〈 0.82. High resolution transmission electron microscopy (HRTEM) observations reveal that the grain size of the samples is lower than 14 nm, and that it decreases with decreasing x. Of special interest, our investigation of the permeability spectra indicates that these films exhibit an adjustable frequency linewidth of resonance peak, dependant upon changing x. Correspondingly, large and adjustable damping coefficients (aeff) from 0.023 to 0.043 were achieved by decreasing x from 0.82 to 0.55. Combined with the HRTEM results, the variation of αeff with x was analyzed in detail.展开更多
We review our works that focus on the microwave magnetic properties of metallic, ferrite and granular thin films. Soft magnetic material with large permeability and low energy loss in the GHz range is a challenge for ...We review our works that focus on the microwave magnetic properties of metallic, ferrite and granular thin films. Soft magnetic material with large permeability and low energy loss in the GHz range is a challenge for the inforcom technologies. GHz magnetic properties of the soft magnetic thin films with in-plane anisotropy were investigated. It is found that several hundreds of permeability at the GHz frequency was achieved for Col00_xZrx and Co90Nbl0 metallic thin films because of their high satu- ration magnetization, and an adjustable resonance frequency from 1.3 to 4.9 GHz was obtained. Compared with the metallic thin films, the weaker saturation magnetization of Ni-Zn ferrite thin films results in several tens of permeability at the GHz frequency, but the larger resistivity of the ferrite prepared in situ without any heating treatments has lower energy loss. In order to obtain materials with large permeability and low energy loss in the GHz range, the [CoFe-NiZn ferrite] composite granular thin films were investigated, where the advantage of higher saturation magnetization for the metallic alloy and the high resis- tivity as well as high saturation magnetization for the ferrite results in a good GHz magnetic performance.展开更多
基金supported by the National Basic Research Program of China(Grant No.2012CB932304)the National Natural Science Foundation of China(Grant Nos.U1232210,91122035,11174124,and 11374137)+1 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.14KJB140003)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘We present a detailed study on the magnetic coercivity of Co/CoO-MgO core-shell systems, which exhibits a large exchange bias due to an increase of the uncompensated spin density at the interface between the CoO shell and the metallic Co core by replacing Co by Mg within the CoO shell. We find a large magnetic coercivity of 7120 Oe around the electrical percolation threshold of the Co/CoO core/shell particles, while samples with a smaller or larger Co metal volume fraction show a considerably smaller coercivity. Thus, this study may lead to a route to improving the magnetic properties of artificial magnetic material in view of potential applications.
基金Funded by the National Natural Science Foundation of Guangxi and Guangxi Key Laboratory of Information Materials Foundation (No.0575093&0710908-11-Z)
文摘Prx(Co40Ag60)100-x (x=0, 0.5, 1, 1.5, 2, 3) granular films have been prepared by DC magneto controlled sputtering method. The XRD data indicated that Pr element favors the (111) plane preferential orientation. Magnetic measurements indicate that the average size of magnetic particles decreases as Pr content increases. For relatively low addition of Pr to CoAg granular films, Pr element can enhance GMR value and a peak value of about -14.3% is obtained at x=1.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11104148,51101088,and 51171082)the Tianjin Natural Science Foundation,China(Grant Nos.14JCZDJC37700 and 13JCQNJC02800)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20110031110034)the Fundamental Research Funds for the Central Universities,China
文摘Cux(Cu2O)1-x(0.09 x 1.00) granular films with thickness about 280 nm have been fabricated by direct current reactive magnetron sputtering. The atomic ratio x can be controlled by the oxygen flow rate during Cux(Cu2O)1-x deposition. Room-temperature ferromagnetism(FM) is found in all of the samples. The saturated magnetization increases at first and then decreases with the decrease of x. The photoluminescence spectra show that the magnetization is closely correlated with the Cu vacancies in the Cux(Cu2O)1-x granular films. Fundamentally, the FM could be understood by the Stoner model based on the charge transfer mechanism. These results may provide solid evidence and physical insights on the origin of FM in the Cu2O-based oxides diluted magnetic semiconductors, especially for systems without intentional magnetic atom doping.
基金Supported by National Natural Science Foundation of China!(No.194 7710 5)
文摘The quantum phenomenological model has been proposed to investigate the magnetic property of nanometer magnetic granular film in an applied magnetic field.The magnetoresistance of the granular films with two distinct magnetic phases has been calculated by using Born approximation.The results show that the average scattering cross section of the magnetic cluster decreases with the increasing number n of the atom.The origin of the giant magnetoresistance comes from the spin dependent scattering between conduction electrons and magnetic granules and the field dependence of magnetoresistance and the quadratic relation of magnetoresistance on the rate of magnetic moment are in good agreement with the experiments reported.
基金Funded by the National Natural Science Foundation of China(No.10875107)the Aeronautical Science Foundation(No.2010ZF55013)+1 种基金the Basic and Advanced Technology Program of Henan Province (No.112300410229)the Foundation for University Young Key Teacher by Henan Province (No. 2010GGJS-146)
文摘By finely controlling the deposition parameters in the pulsed electron deposition process, granular La 2/3 Ca 1/3 MnO 3 (LCMO) film was grown on silicon substrates. The substrate temperature, ambient pressure in the deposition chamber and acceleration potential for the electron beam were all found to affect the grain size of the film, resulting in different morphologies of the samples. Transport properties of the obtained granular films, especially the magnetoresistance (MR), were studied. Prominent low-field MR was observed in all samples, indicating the forming of grain boundaries in the sample. The low-field MR show great sensitive to the morphology evolution, which reaches the highest value of about 40% for the sample with the grain size of about 250 nm. More interestingly, positive-MR (p-MR) was also detected above 300 K when low magnetic field applying, whereas it disappeared with higher magnetic field applied up to 1.5 and 2 Tesla. Instead of the spin- polarized tunneling process being commonly regarded as a responsible reason, lattice mismatch between LCMO film and silicon substrate appears to be the origin of the p-MR
基金supported by the National Basic Research Program of China (Grant No. 2012CB933103)the National Science Fund for Distinguished Young Scholars (Grant No. 50825101)the National Natural Science Foundation of China (Grant Nos. 50971108 and 51171158)
文摘In this paper,we present a review of electron transport properties of magnetic granular films.Magnetic granular films are nanocomposite materials which consist of magnetic nanoparticles embedded in a nonmagnetic matrix or assembling of magnetic nanoparticles.According to the style of the nonmagnetic matrix,microstructure and the electron transport mechanism of the films,the magnetic granular films were divided into three groups:(1) magnetic metal-metal granular films,(2) magnetic metal-insulator granular films and(3) magnetic nanocluster-assembled granular films.Moreover,we also systematically review the magnetic properties,transport properties and magnetoresistance effect of size-monodispersed Co and Fe nanocluster-assembled films.
基金supported by the National Natural Science Foundation of China (Grant No. U0734001)the Fundamental Research Funds for the Central Universities, South China University Of Technology (Grant No. 2009ZM0247)
文摘Amorphous CoxC1-x granular films were prepared on n-Si(100) substrate by dc magnetron sputtering. The effects of Co con- centration, film thickness and annealing temperature on the magnetic properties and magnetoresistance (MR) were investigated After annealing at 500℃ for 0.5 hour, the Co(002) peak of the CoxC1-x(x〉2.5 at.%) films was observed, but cracks appeared in the films. Saturation magnetization Ms increased steadily with the increase of Co concentration from 2.5 at.% to 50 at.% and also increased with annealing temperature from room temperature to 400℃. The coercivity of CoxC1-x films was less than 180 Oe. The as-deposited Co2.5C97.5 granular films with 80 nm thickness showed a highly positive MR, up to 15.5% at a magnetic field of 0.8 T, observed at T=300 K when the external magnetic field was perpendicular to the film surface. With increasing film thickness and annealing temperature, the value of MR was found to decrease gradually and changed from positive to neg- ative. The MR effect of the CoxC1-x granular films can be explained by p-n heterojunction theory and interface scattering ef- fect.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.50901050 and 51101079)
文摘The effect of the volume fraction of ferromagnetic metal (x) in (Ni75Fe25)x(ZnO)1-x nanogranular thin films on microstructural, soft-magnetic, and high-frequency properties was investigated. Good soft-magnetic properties were obtained in a broad x range, with 0.55 〈 x 〈 0.82. High resolution transmission electron microscopy (HRTEM) observations reveal that the grain size of the samples is lower than 14 nm, and that it decreases with decreasing x. Of special interest, our investigation of the permeability spectra indicates that these films exhibit an adjustable frequency linewidth of resonance peak, dependant upon changing x. Correspondingly, large and adjustable damping coefficients (aeff) from 0.023 to 0.043 were achieved by decreasing x from 0.82 to 0.55. Combined with the HRTEM results, the variation of αeff with x was analyzed in detail.
基金supported by the National Natural Science Foundation of China (Grant No. 11034004)National Science Fund for Distinguished Young Scholars (Grant No. 50925103)+1 种基金Key Grant Project of Chinese Ministry of Education (Grant No. 309027)the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2010-219)
文摘We review our works that focus on the microwave magnetic properties of metallic, ferrite and granular thin films. Soft magnetic material with large permeability and low energy loss in the GHz range is a challenge for the inforcom technologies. GHz magnetic properties of the soft magnetic thin films with in-plane anisotropy were investigated. It is found that several hundreds of permeability at the GHz frequency was achieved for Col00_xZrx and Co90Nbl0 metallic thin films because of their high satu- ration magnetization, and an adjustable resonance frequency from 1.3 to 4.9 GHz was obtained. Compared with the metallic thin films, the weaker saturation magnetization of Ni-Zn ferrite thin films results in several tens of permeability at the GHz frequency, but the larger resistivity of the ferrite prepared in situ without any heating treatments has lower energy loss. In order to obtain materials with large permeability and low energy loss in the GHz range, the [CoFe-NiZn ferrite] composite granular thin films were investigated, where the advantage of higher saturation magnetization for the metallic alloy and the high resis- tivity as well as high saturation magnetization for the ferrite results in a good GHz magnetic performance.