期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Anomaly detection of earthquake precursor data using long short-term memory networks 被引量:7
1
作者 Cai Yin Mei-Ling Shyu +2 位作者 Tu Yue-Xuan Teng Yun-Tian Hu Xing-Xing 《Applied Geophysics》 SCIE CSCD 2019年第3期257-266,394,共11页
Earthquake precursor data have been used as an important basis for earthquake prediction.In this study,a recurrent neural network(RNN)architecture with long short-term memory(LSTM)units is utilized to develop a predic... Earthquake precursor data have been used as an important basis for earthquake prediction.In this study,a recurrent neural network(RNN)architecture with long short-term memory(LSTM)units is utilized to develop a predictive model for normal data.Furthermore,the prediction errors from the predictive models are used to indicate normal or abnormal behavior.An additional advantage of using the LSTM networks is that the earthquake precursor data can be directly fed into the network without any elaborate preprocessing as required by other approaches.Furthermore,no prior information on abnormal data is needed by these networks as they are trained only using normal data.Experiments using three groups of real data were conducted to compare the anomaly detection results of the proposed method with those of manual recognition.The comparison results indicated that the proposed LSTM network achieves promising results and is viable for detecting anomalies in earthquake precursor data. 展开更多
关键词 earthquake precursor data deep learning LSTM-RNN prediction model anomaly detect io n
下载PDF
The earthquake precursor detected in a granular medium and a proposed model for the propagation of precursive stress-strain signal 被引量:2
2
作者 LU KunQuan HOU MeiYing +7 位作者 WANG Qiang PENG Zheng SUN Wei SUN XiaoMing WANG YuYing TONG XiaoHui JIANG ZeHui LIU JiXing 《Chinese Science Bulletin》 SCIE EI CAS 2011年第11期1071-1079,共9页
A way to detect the seismic precursor in granular medium is described and a model of propagation for precursive stress-strain signals is proposed.A strain sensor buried in a sandpit is used to measure a seismic precur... A way to detect the seismic precursor in granular medium is described and a model of propagation for precursive stress-strain signals is proposed.A strain sensor buried in a sandpit is used to measure a seismic precursor signal.The signal has been investigated and confirmed to originate from a specific earthquake.A comparison of simulated and experimental signals indicates that the signal results from the strain in the earth's strata.Based on the behavioral characteristics of granular materials,an analysis of why this method can be so sensitive to the seismic strain signal is undertaken and a model for the propagation of this stress-strain signal is proposed.The Earth's lithosphere is formed of tectonic plates,faults and fault gouges at their boundaries.In the case of the quasi-static mechanics of seismic precursory stress-strain propagation,the crustal lithosphere should be treated as a large-scale granular system.During a seismogenic event,accumulated force generates the stick-slip motion of adjacent tectonic plates and incrementally pushes blocks farther apart through stick-slip shift.The shear force released through this plate displacement causes soil compression deformation.The discrete properties of the sand in the sandpit lead to the sensitive response of the sensor to the deformation signal which enables it to detect the seismic precursor.From the analysis of the mechanism of the stress-strain propagation in the lithosphere,an explanation is found for the lack of signal detection by sensors installed in rocks.The principles and method presented in this paper provide a new technique for investigating seismic precursors to shallow-source earthquakes. 展开更多
关键词 地震前兆 信号传播 应力应变 信号检测 颗粒介质 信号模型 岩石圈板块 应变信号
原文传递
机器学习在地震预测中的应用进展 被引量:7
3
作者 袁爱璟 王伟君 +2 位作者 彭菲 闫坤 寇华东 《地震》 CSCD 北大核心 2021年第1期51-66,共16页
机器学习(Machine Learning,ML),特别是深度学习(Deep Learning,DL),在最近几年发展迅速,在数据挖掘、计算机视觉、自然语言处理、数据特征提取和预测等方面的应用中取得了令人振奋的进展。地震预测是复杂、涉及面广、不成熟而且充满争... 机器学习(Machine Learning,ML),特别是深度学习(Deep Learning,DL),在最近几年发展迅速,在数据挖掘、计算机视觉、自然语言处理、数据特征提取和预测等方面的应用中取得了令人振奋的进展。地震预测是复杂、涉及面广、不成熟而且充满争议的科学问题;其发展受到尚不清楚的地震机理和孕震结构、不完备的观测数据与真伪不清的地震现象等方面的限制。但是,机器学习有可能改善复杂地震数据的挖掘和发现,推动地震预测科学的发展。本文回顾了机器学习在地震预测的应用,包括强震、强余震和岩石破裂失稳等方面的预测,并展望了机器学习在地震预测方面的研究趋势。 展开更多
关键词 地震预测 地震前兆 机器学习 深度学习
下载PDF
以颗粒物理原理认识地震--地震成因、地震前兆和地震预测 被引量:20
4
作者 陆坤权 厚美瑛 +3 位作者 姜泽辉 王强 孙刚 刘寄星 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第11期1-20,共20页
本文以地壳和地幔的基本构造和己有观测事实为依据,运用颗粒物理原理,将地壳和地幔作为大尺度离散态颗粒物质体系处理,重新认识地震孕育过程,前兆产生机制及规律,探求地震预测方法和途径.主要结果是:建立了地壳与地幔构成和运动的颗粒模... 本文以地壳和地幔的基本构造和己有观测事实为依据,运用颗粒物理原理,将地壳和地幔作为大尺度离散态颗粒物质体系处理,重新认识地震孕育过程,前兆产生机制及规律,探求地震预测方法和途径.主要结果是:建立了地壳与地幔构成和运动的颗粒模型;提出了引发地震的大地构造力的形成机制,以及地震前兆信息产生和传播规律;说明了地震前兆信息的主要特征及其与地震发生之间的关联,阐述了探测有效地震前兆信息的方法原理;用颗粒流动的阻塞-解阻塞转变原理解释了深源地震发生机制;对以前难以理解的若干地震学现象进行了解释,并讨论了地震的可预测性。由于地壳和地幔的离散结构特征,对于地震孕育的准静力学过程,连续介质理论不再适用.以颗粒物理原理研究地震成因、地震前兆和地震预测,所获得的新认识与传统连续介质地震学观点有本质区别。 展开更多
关键词 颗粒物质 地震预报 地震前兆 深源地震
原文传递
地震前兆信息传播、分布及其探测原理 被引量:3
5
作者 陆坤权 厚美瑛 +2 位作者 王强 姜泽辉 刘寄星 《物理学报》 SCIE EI CAS CSCD 北大核心 2011年第11期776-785,共10页
地壳岩石层由板块、断层和其间的断层泥构成,在研究地震前兆信息传播这类准静力学问题时,应将其作为大尺度离散态颗粒物质体系处理.地震孕育过程中,在大地构造力驱动下,岩石层块克服所受摩擦力和边界断层泥阻力发生滞滑移动.当岩块间断... 地壳岩石层由板块、断层和其间的断层泥构成,在研究地震前兆信息传播这类准静力学问题时,应将其作为大尺度离散态颗粒物质体系处理.地震孕育过程中,在大地构造力驱动下,岩石层块克服所受摩擦力和边界断层泥阻力发生滞滑移动.当岩块间断层泥受挤压后其强度增大到一定程度时,又推动下一岩石层块滞滑移动,就这样渐次使其他岩石层块发生移动,并以力链形式分布和传递.文章给出了此模型的物理依据和实际观测例证;通过模拟实验和分析阐述了力-移动-形变在地层中分布的表达形式和传播时间序;说明了地震前兆信息的主要特征及其与地震发生之间的关联,以及探测有效地震前兆信息的方法原理.同时,论述了用颗粒物理原理与连续介质观念对地震前兆认识的本质区别,解释了连续介质观点难以理解的若干地震学问题. 展开更多
关键词 地震前兆 颗粒物质 滞滑移动 力链
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部