This study presents the micro-scale behavior of granular materials under biaxial cyclic loading for differ- ent confining pressures using the two-dimensional (2D) discrete element method (DEM). Initially, 8450 ova...This study presents the micro-scale behavior of granular materials under biaxial cyclic loading for differ- ent confining pressures using the two-dimensional (2D) discrete element method (DEM). Initially, 8450 ovals were generated in a rectangular frame without any overlap. Four dense samples having confining pressures of 15, 25, 50, and 100 kPa were prepared from the initially generated sparse sample. Numeri- cal simulations were performed under biaxial cyclic loading using these isotropically compressed dense samples. The numerical results depict stress-strain-dilatancy behavior that was similar to that observed in experimental studies. The relationship between the stress ratio and dilatancy rate is almost indepen- dent of confining pressures during loading but significantly dependent on the confining pressures during unloading. The evolution of the coordination number, effective coordination number and slip coordina- tion number depends on both the confining pressures and cyclic loading. The cyclic loading significantly affects the microtopology of the granular assembly. The contact fabric and the fabric-related anisotropy are reported, as well. A strong correlation between the stress ratio and the fabric related to contact normals is observed during cyclic loading, irrespective of confining pressures.展开更多
Earlier work by the authors in which active sound pressure signals and impulsive pressure disturbances were used to measure flow rates in gas solid systems was briefly reviewed. Work in progress with an emerging techn...Earlier work by the authors in which active sound pressure signals and impulsive pressure disturbances were used to measure flow rates in gas solid systems was briefly reviewed. Work in progress with an emerging technology in which Helmholtz resonance is applied to the measurement of volume is outlined.展开更多
Industrial mixers for powders and granular materials operate with no effective control of mixture quality and lack scientific design. The last twenty years have seen growth in understanding of mixing and mixers. Howev...Industrial mixers for powders and granular materials operate with no effective control of mixture quality and lack scientific design. The last twenty years have seen growth in understanding of mixing and mixers. However, research falls far short of what is needed for on-line characterisation of mixture quality. Secondly, although theoretical descriptions of a few mixer types have been reported, these fall far short of what is needed for equipment design. Two thrusts could revolutionise this situation. One is a scientific characterisation of mixer structure applicable to industrial scale as well as laboratory scale equipment; this is now within our grasp using digital imaging. The other is the development of ideas to overcome the restricted number of particles that can be used in the Distinct Element Method (DEM) for mixers. The goal should be to take the designer through a sequence of steps to the most appropriate mixer size, configuration and operating conditions for a given process duty.展开更多
文摘This study presents the micro-scale behavior of granular materials under biaxial cyclic loading for differ- ent confining pressures using the two-dimensional (2D) discrete element method (DEM). Initially, 8450 ovals were generated in a rectangular frame without any overlap. Four dense samples having confining pressures of 15, 25, 50, and 100 kPa were prepared from the initially generated sparse sample. Numeri- cal simulations were performed under biaxial cyclic loading using these isotropically compressed dense samples. The numerical results depict stress-strain-dilatancy behavior that was similar to that observed in experimental studies. The relationship between the stress ratio and dilatancy rate is almost indepen- dent of confining pressures during loading but significantly dependent on the confining pressures during unloading. The evolution of the coordination number, effective coordination number and slip coordina- tion number depends on both the confining pressures and cyclic loading. The cyclic loading significantly affects the microtopology of the granular assembly. The contact fabric and the fabric-related anisotropy are reported, as well. A strong correlation between the stress ratio and the fabric related to contact normals is observed during cyclic loading, irrespective of confining pressures.
文摘Earlier work by the authors in which active sound pressure signals and impulsive pressure disturbances were used to measure flow rates in gas solid systems was briefly reviewed. Work in progress with an emerging technology in which Helmholtz resonance is applied to the measurement of volume is outlined.
文摘Industrial mixers for powders and granular materials operate with no effective control of mixture quality and lack scientific design. The last twenty years have seen growth in understanding of mixing and mixers. However, research falls far short of what is needed for on-line characterisation of mixture quality. Secondly, although theoretical descriptions of a few mixer types have been reported, these fall far short of what is needed for equipment design. Two thrusts could revolutionise this situation. One is a scientific characterisation of mixer structure applicable to industrial scale as well as laboratory scale equipment; this is now within our grasp using digital imaging. The other is the development of ideas to overcome the restricted number of particles that can be used in the Distinct Element Method (DEM) for mixers. The goal should be to take the designer through a sequence of steps to the most appropriate mixer size, configuration and operating conditions for a given process duty.