Furanocoumarins (FCs) are a group of related plant defense metabolites occurring in several plant families, including some species in the genus citrus, such as grapefruit and pummelo. FCs function as toxins against pa...Furanocoumarins (FCs) are a group of related plant defense metabolites occurring in several plant families, including some species in the genus citrus, such as grapefruit and pummelo. FCs function as toxins against pathogens, insects and other plant pests and some are toxic to humans at high levels. Although the levels of FCs in grapefruits are non-toxic to humans, they inhibit the intestinal enzyme CYP3A, thus preventing degradation of medicines, such as statins, and causing dangerous overdose effects. This overdosing can cause devastating side effects, ranging from stomach bleeding to kidney problems, muscle aches and irregular heartbeats. In the present study, we utilize LC/MS to characterize the levels of FCs pathway intermediates and end products in twelve citrus cultivars, including mandarin (Citrus reticulata), orange [Citrus sinensis (L.) Osbeck], Pummelo [Citrus maxima (Burm.) Merr.], grapefruit (Citrus paradisi Macf.), and two newly selected grapefruit like varieties [(Citrus reticulate) X [Citrus maxima (Burm.) Merr]. The orange and mandarin varieties do not contain FCs or FCs precursor compounds suggesting that this biosynthetic pathway is absent or inactive in mandarins and oranges and therefore a good genetic source for null alleles to FCs biosynthesis. We report the selection and characterization of two new low FCs and seedless grapefruit-like varieties, “Aliza” and “Coocki”, developed by a cross between pummelo and mandarin. Fruits of these varieties resemble grapefruit and contain high levels of the flavanone naringin, typical of grapefruit, but contain only trace amounts of FCs (based on LCMS analysis). Based on the variability of FCs content and inheritance in citrus species, the results suggest that future development of new low-FCs grapefruit varieties is an achievable objective.展开更多
Objective: To investigate the potential effect of pure total flavonoids from Citrus paradisi Macfad peel(PTFC) on the proliferation and apoptosis of human myeloid leukemia cells Kasumi-1, HL-60 and K562, and the un...Objective: To investigate the potential effect of pure total flavonoids from Citrus paradisi Macfad peel(PTFC) on the proliferation and apoptosis of human myeloid leukemia cells Kasumi-1, HL-60 and K562, and the underlying mechanisms. Methods: PTFC was extracted from Citrus paradisi Macfad peel and was identified by high performance liquid chromatography. The effect of PTFC on the proliferation and apoptosis of leukemia cells were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, fluorescent microscopy and flow cytometry, respectively. The effect of PTFC on the expression levels of apoptosis-related regulators was determined by Western blot assay. Results: Treatment with PTFC inhibited leukemia cell proliferation in a dose-and time-dependent manner and triggered Kasumi-1 cell apoptosis. Treatment with PTFC significantly increased the levels of activated poly adenosine diphosphate-ribosepolymerase and caspase-3/-9, but reduced the levels of Mcl-1 expression in Kasumi-1 cells. However, PTFC did not obviously induce HL-60 cell apoptosis. Conclusion: PTFC inhibited leukemia cell proliferation and induced their apoptosis by modulating apoptosisrelated regulator expression in leukemia cells in vitro.展开更多
文摘Furanocoumarins (FCs) are a group of related plant defense metabolites occurring in several plant families, including some species in the genus citrus, such as grapefruit and pummelo. FCs function as toxins against pathogens, insects and other plant pests and some are toxic to humans at high levels. Although the levels of FCs in grapefruits are non-toxic to humans, they inhibit the intestinal enzyme CYP3A, thus preventing degradation of medicines, such as statins, and causing dangerous overdose effects. This overdosing can cause devastating side effects, ranging from stomach bleeding to kidney problems, muscle aches and irregular heartbeats. In the present study, we utilize LC/MS to characterize the levels of FCs pathway intermediates and end products in twelve citrus cultivars, including mandarin (Citrus reticulata), orange [Citrus sinensis (L.) Osbeck], Pummelo [Citrus maxima (Burm.) Merr.], grapefruit (Citrus paradisi Macf.), and two newly selected grapefruit like varieties [(Citrus reticulate) X [Citrus maxima (Burm.) Merr]. The orange and mandarin varieties do not contain FCs or FCs precursor compounds suggesting that this biosynthetic pathway is absent or inactive in mandarins and oranges and therefore a good genetic source for null alleles to FCs biosynthesis. We report the selection and characterization of two new low FCs and seedless grapefruit-like varieties, “Aliza” and “Coocki”, developed by a cross between pummelo and mandarin. Fruits of these varieties resemble grapefruit and contain high levels of the flavanone naringin, typical of grapefruit, but contain only trace amounts of FCs (based on LCMS analysis). Based on the variability of FCs content and inheritance in citrus species, the results suggest that future development of new low-FCs grapefruit varieties is an achievable objective.
基金Supported by Zhejiang Provincial Natural Science Foundation of China(No.LY14H080003)
文摘Objective: To investigate the potential effect of pure total flavonoids from Citrus paradisi Macfad peel(PTFC) on the proliferation and apoptosis of human myeloid leukemia cells Kasumi-1, HL-60 and K562, and the underlying mechanisms. Methods: PTFC was extracted from Citrus paradisi Macfad peel and was identified by high performance liquid chromatography. The effect of PTFC on the proliferation and apoptosis of leukemia cells were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, fluorescent microscopy and flow cytometry, respectively. The effect of PTFC on the expression levels of apoptosis-related regulators was determined by Western blot assay. Results: Treatment with PTFC inhibited leukemia cell proliferation in a dose-and time-dependent manner and triggered Kasumi-1 cell apoptosis. Treatment with PTFC significantly increased the levels of activated poly adenosine diphosphate-ribosepolymerase and caspase-3/-9, but reduced the levels of Mcl-1 expression in Kasumi-1 cells. However, PTFC did not obviously induce HL-60 cell apoptosis. Conclusion: PTFC inhibited leukemia cell proliferation and induced their apoptosis by modulating apoptosisrelated regulator expression in leukemia cells in vitro.