在代码搜索任务中,已有的基于深度学习的算法,一方面不能有效提取代码特征和查询特征之间的细粒度交互关系,另一方面未考虑特征之间潜在的结构化特征,无法实现更精确的匹配。本文提出了一种基于交互和图注意力网络的代码搜索模型IGANCS(...在代码搜索任务中,已有的基于深度学习的算法,一方面不能有效提取代码特征和查询特征之间的细粒度交互关系,另一方面未考虑特征之间潜在的结构化特征,无法实现更精确的匹配。本文提出了一种基于交互和图注意力网络的代码搜索模型IGANCS(Interaction and Graph Attention Network based model for Code Search)。该模型通过引入基于相似度矩阵的交互机制,学习代码特征和查询特征的细粒度交互关系,实现代码与查询之间的对齐;引入图注意力机制,利用自注意力层学习代码和查询中隐藏的结构化特征,更深入地挖掘代码和查询的结构化语义;利用最大池化机制分别聚合代码特征和查询特征,提取最重要的特征信息。本文在公开的Java数据集和Python数据集上对IGANCS进行了评估。实验结果表明,IGANCS在Mean Reciprocal Rank(MRR)和SuccessRate@1/5/10指标上优于已有的基线模型。展开更多
文摘在代码搜索任务中,已有的基于深度学习的算法,一方面不能有效提取代码特征和查询特征之间的细粒度交互关系,另一方面未考虑特征之间潜在的结构化特征,无法实现更精确的匹配。本文提出了一种基于交互和图注意力网络的代码搜索模型IGANCS(Interaction and Graph Attention Network based model for Code Search)。该模型通过引入基于相似度矩阵的交互机制,学习代码特征和查询特征的细粒度交互关系,实现代码与查询之间的对齐;引入图注意力机制,利用自注意力层学习代码和查询中隐藏的结构化特征,更深入地挖掘代码和查询的结构化语义;利用最大池化机制分别聚合代码特征和查询特征,提取最重要的特征信息。本文在公开的Java数据集和Python数据集上对IGANCS进行了评估。实验结果表明,IGANCS在Mean Reciprocal Rank(MRR)和SuccessRate@1/5/10指标上优于已有的基线模型。