Let h:E(G)→[0,1]be a function.If a≤∑e∋xh(e)≤b holds for each x∈V(G),then we call G[Fh]a fractional[a,b]-factor of G with indicator function h,where Fh={e:e∈E(G),h(e)>0}.A graph G is called a fractional[a,b]-c...Let h:E(G)→[0,1]be a function.If a≤∑e∋xh(e)≤b holds for each x∈V(G),then we call G[Fh]a fractional[a,b]-factor of G with indicator function h,where Fh={e:e∈E(G),h(e)>0}.A graph G is called a fractional[a,b]-covered graph if for every edge e of G,there is a fractional[a,b]-factor G[Fh]with h(e)=1.Zhou,Xu and Sun[S.Zhou,Y.Xu,Z.Sun,Degree conditions for fractional(a,b,k)-critical covered graphs,Information Processing Letters 152(2019)105838]defined the concept of a fractional(a,b,k)-critical covered graph,i.e.,for every vertex subset Q with|Q|=k of G,G−Q is a fractional[a,b]-covered graph.In this article,we study the problem of a fractional(2,b,k)-critical covered graph,and verify that a graph G withδ(G)≥3+k is a fractional(2,b,k)-critical covered graph if its toughness t(G)≥1+1b+k2b,where b and k are two nonnegative integers with b≥2+k2.展开更多
Let a,b,k,r be nonnegative integers with 1 ≤ a ≤b and r ≥ 2. Let G be a graph of order n with n 〉 (a+b)(r(a+b)-2)+ak/a. In this paper, we first show a characterization for all fractional (a, b, k)-criti...Let a,b,k,r be nonnegative integers with 1 ≤ a ≤b and r ≥ 2. Let G be a graph of order n with n 〉 (a+b)(r(a+b)-2)+ak/a. In this paper, we first show a characterization for all fractional (a, b, k)-critical graphs. Then using the result, we prove that G is all fractional (a, b, k)-critical if δ(G) ≥ (r-1)b2/a +k and |NG(xl) ∪NG(x2) ∪... ∪NG(xr)| ≥ bn+ak/a+b for any independent subset {xl, x2, .., xr} in G. Furthermore, it is shown that the lower bound on the condition |NG(xl) ∪NG(x2) ∪... ∪NG(xr)| ≥ bn=ak/ a+b is best possible in some sense, and it is an extension of Lu's previous result.展开更多
A fractional[a,b]-factor of a graph G is a function h from E(G)to[0,1]satisfying a≤d^(h)_(G)(v)≤b for every vertex v of G,where d^(h)_(G)(v)=∑e∈E(v)h(e)and E(v)={e=uv:u∈V(G)}.A graph G is called fractional[a,b]-c...A fractional[a,b]-factor of a graph G is a function h from E(G)to[0,1]satisfying a≤d^(h)_(G)(v)≤b for every vertex v of G,where d^(h)_(G)(v)=∑e∈E(v)h(e)and E(v)={e=uv:u∈V(G)}.A graph G is called fractional[a,b]-covered if G contains a fractional[a,b]-factor h with h(e)=1 for any edge e of G.A graph G is called fractional(a,b,k)-critical covered if G—Q is fractional[a,b]-covered for any Q⊆V(G)with∣Q∣=k.In this article,we demonstrate a neighborhood condition for a graph to be fractional(a,b,k)-critical covered.Furthermore,we claim that the result is sharp.展开更多
A graph G is called a fractional[a,b]-covered graph if for each e∈E(G),G contains a fractional[a,b]-factor covering e.A graph G is called a fractional(a,b,k)-critical covered graph if for any W■V(G)with|W|=k,G-W is ...A graph G is called a fractional[a,b]-covered graph if for each e∈E(G),G contains a fractional[a,b]-factor covering e.A graph G is called a fractional(a,b,k)-critical covered graph if for any W■V(G)with|W|=k,G-W is fractional[a,b]-covered,which was first defined and investigated by Zhou,Xu and Sun[S.Zhou,Y.Xu,Z.Sun,Degree conditions for fractional(a,b,k)-critical covered graphs,Information Processing Letters 152(2019)105838].In this work,we proceed to study fractional(a,b,k)-critical covered graphs and derive a result on fractional(a,b,k)-critical covered graphs depending on minimum degree and neighborhoods of independent sets.展开更多
A graph G is called a (g, f)-uniform graph if for each edge of G, there is a(g, f)-factor containing it and another (g, f)-factor excluding it. In this paper a necessary andsufficient condition for a graph to be a (g,...A graph G is called a (g, f)-uniform graph if for each edge of G, there is a(g, f)-factor containing it and another (g, f)-factor excluding it. In this paper a necessary andsufficient condition for a graph to be a (g, f)-uniform graph is given and some applications of thiscondition are discussed. In particular, some simple sufficient conditions for a graph to be an [a,b]-uniform graph are obtained for a b.展开更多
文摘Let h:E(G)→[0,1]be a function.If a≤∑e∋xh(e)≤b holds for each x∈V(G),then we call G[Fh]a fractional[a,b]-factor of G with indicator function h,where Fh={e:e∈E(G),h(e)>0}.A graph G is called a fractional[a,b]-covered graph if for every edge e of G,there is a fractional[a,b]-factor G[Fh]with h(e)=1.Zhou,Xu and Sun[S.Zhou,Y.Xu,Z.Sun,Degree conditions for fractional(a,b,k)-critical covered graphs,Information Processing Letters 152(2019)105838]defined the concept of a fractional(a,b,k)-critical covered graph,i.e.,for every vertex subset Q with|Q|=k of G,G−Q is a fractional[a,b]-covered graph.In this article,we study the problem of a fractional(2,b,k)-critical covered graph,and verify that a graph G withδ(G)≥3+k is a fractional(2,b,k)-critical covered graph if its toughness t(G)≥1+1b+k2b,where b and k are two nonnegative integers with b≥2+k2.
基金Supported by National Natural Science Foundation of China(Grant No.11371009)
文摘Let a,b,k,r be nonnegative integers with 1 ≤ a ≤b and r ≥ 2. Let G be a graph of order n with n 〉 (a+b)(r(a+b)-2)+ak/a. In this paper, we first show a characterization for all fractional (a, b, k)-critical graphs. Then using the result, we prove that G is all fractional (a, b, k)-critical if δ(G) ≥ (r-1)b2/a +k and |NG(xl) ∪NG(x2) ∪... ∪NG(xr)| ≥ bn+ak/a+b for any independent subset {xl, x2, .., xr} in G. Furthermore, it is shown that the lower bound on the condition |NG(xl) ∪NG(x2) ∪... ∪NG(xr)| ≥ bn=ak/ a+b is best possible in some sense, and it is an extension of Lu's previous result.
基金This work is supported by Six Big Talent Peak of Jiangsu Province,China(Grant No.JY-022).
文摘A fractional[a,b]-factor of a graph G is a function h from E(G)to[0,1]satisfying a≤d^(h)_(G)(v)≤b for every vertex v of G,where d^(h)_(G)(v)=∑e∈E(v)h(e)and E(v)={e=uv:u∈V(G)}.A graph G is called fractional[a,b]-covered if G contains a fractional[a,b]-factor h with h(e)=1 for any edge e of G.A graph G is called fractional(a,b,k)-critical covered if G—Q is fractional[a,b]-covered for any Q⊆V(G)with∣Q∣=k.In this article,we demonstrate a neighborhood condition for a graph to be fractional(a,b,k)-critical covered.Furthermore,we claim that the result is sharp.
文摘A graph G is called a fractional[a,b]-covered graph if for each e∈E(G),G contains a fractional[a,b]-factor covering e.A graph G is called a fractional(a,b,k)-critical covered graph if for any W■V(G)with|W|=k,G-W is fractional[a,b]-covered,which was first defined and investigated by Zhou,Xu and Sun[S.Zhou,Y.Xu,Z.Sun,Degree conditions for fractional(a,b,k)-critical covered graphs,Information Processing Letters 152(2019)105838].In this work,we proceed to study fractional(a,b,k)-critical covered graphs and derive a result on fractional(a,b,k)-critical covered graphs depending on minimum degree and neighborhoods of independent sets.
基金Supported by National Natural Science Foundation (10471078, 10201019) and RSDP (20040422004) of China
文摘A graph G is called a (g, f)-uniform graph if for each edge of G, there is a(g, f)-factor containing it and another (g, f)-factor excluding it. In this paper a necessary andsufficient condition for a graph to be a (g, f)-uniform graph is given and some applications of thiscondition are discussed. In particular, some simple sufficient conditions for a graph to be an [a,b]-uniform graph are obtained for a b.