期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于Graph WaveNet模型的机场网络延误预测
1
作者 姜雨 戴垚宇 +2 位作者 刘振宇 吴薇薇 顾欣 《武汉理工大学学报(交通科学与工程版)》 2023年第5期775-780,共6页
文中提出一种基于深度Graph WaveNet(GWN)模型的机场网络延误预测方法,对机场网络整体建模,将其转换为图结构并对网络中所有机场进行离港航班多步延误预测.GWN模型融合时间和空间卷积网络,时间卷积层引入扩展因果卷积和门控机制提升模... 文中提出一种基于深度Graph WaveNet(GWN)模型的机场网络延误预测方法,对机场网络整体建模,将其转换为图结构并对网络中所有机场进行离港航班多步延误预测.GWN模型融合时间和空间卷积网络,时间卷积层引入扩展因果卷积和门控机制提升模型效率;空间卷积层采用双向卷积及自适应邻接矩阵充分挖掘延误信息的空间关联性.选择美国51个机场构建机场网络并进行延误预测分析.结果表明:GWN模型对机场未来3天离港航班准点率预测的平均绝对误差分别为4.718%、5.145%和5.240%,显著优于其它基线模型,且对不同量级机场均有稳定的预测表现,在多步预测上具有突出优势. 展开更多
关键词 航班延误预测 graph wavenet模型 机场网络 深度学习
下载PDF
Combining random forest and graph wavenet for spatial-temporal data prediction 被引量:1
2
作者 Chong Chen Yanbo Xu +2 位作者 Jixuan Zhao Lulu Chen Yaru Xue 《Intelligent and Converged Networks》 EI 2022年第4期364-377,共14页
The prosperity of deep learning has revolutionized many machine learning tasks(such as image recognition,natural language processing,etc.).With the widespread use of autonomous sensor networks,the Internet of Things,a... The prosperity of deep learning has revolutionized many machine learning tasks(such as image recognition,natural language processing,etc.).With the widespread use of autonomous sensor networks,the Internet of Things,and crowd sourcing to monitor real-world processes,the volume,diversity,and veracity of spatial-temporal data are expanding rapidly.However,traditional methods have their limitation in coping with spatial-temporal dependencies,which either incorporate too much data from weakly connected locations or ignore the relationships between those interrelated but geographically separated regions.In this paper,a novel deep learning model(termed RF-GWN)is proposed by combining Random Forest(RF)and Graph WaveNet(GWN).In RF-GWN,a new adaptive weight matrix is formulated by combining Variable Importance Measure(VIM)of RF with the long time series feature extraction ability of GWN in order to capture potential spatial dependencies and extract long-term dependencies from the input data.Furthermore,two experiments are conducted on two real-world datasets with the purpose of predicting traffic flow and groundwater level.Baseline models are implemented by Diffusion Convolutional Recurrent Neural Network(DCRNN),Spatial-Temporal GCN(ST-GCN),and GWN to verify the effectiveness of the RF-GWN.The Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Mean Absolute Percentage Error(MAPE)are selected as performance criteria.The results show that the proposed model can better capture the spatial-temporal relationships,the prediction performance on the METR-LA dataset is slightly improved,and the index of the prediction task on the PEMS-BAY dataset is significantly improved.These improvements are extended to the groundwater dataset,which can effectively improve the prediction accuracy.Thus,the applicability and effectiveness of the proposed model RF-GWN in both traffic flow and groundwater level prediction are demonstrated. 展开更多
关键词 spatial-temporal data random forest graph wavenet groundwater level prediction
原文传递
基于图WaveNet的电动汽车充电负荷预测 被引量:18
3
作者 胡博 张鹏飞 +3 位作者 黄恩泽 刘璟璐 徐健 邢作霞 《电力系统自动化》 EI CSCD 北大核心 2022年第16期207-213,共7页
为了更好地挖掘电网-交通网强耦合态势下电动汽车充电负荷的时空动态特征,提高充电负荷预测精度,提出了一种基于图WaveNet的电动汽车充电负荷预测框架。首先,将耦合的电网-交通网中的充电站看作充电负荷节点;然后,把充电站的充电负荷数... 为了更好地挖掘电网-交通网强耦合态势下电动汽车充电负荷的时空动态特征,提高充电负荷预测精度,提出了一种基于图WaveNet的电动汽车充电负荷预测框架。首先,将耦合的电网-交通网中的充电站看作充电负荷节点;然后,把充电站的充电负荷数据作为节点的特征信息,将各个节点构造成一张图,并把蕴含充电负荷空间维信息的图和充电负荷的时间维信息输入自适应图WaveNet框架中进行预测;最后,以中国某市城区内的充电站负荷数据为例,将基于自适应图WaveNet框架的预测结果与现有方法的预测结果进行对比,验证了所提方法的正确性和有效性。 展开更多
关键词 电动汽车 充电负荷预测 图神经网络 wavenet 时间卷积网络 时空特征挖掘
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部