期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
KGTLIR:An Air Target Intention Recognition Model Based on Knowledge Graph and Deep Learning
1
作者 Bo Cao Qinghua Xing +2 位作者 Longyue Li Huaixi Xing Zhanfu Song 《Computers, Materials & Continua》 SCIE EI 2024年第7期1251-1275,共25页
As a core part of battlefield situational awareness,air target intention recognition plays an important role in modern air operations.Aiming at the problems of insufficient feature extraction and misclassification in ... As a core part of battlefield situational awareness,air target intention recognition plays an important role in modern air operations.Aiming at the problems of insufficient feature extraction and misclassification in intention recognition,this paper designs an air target intention recognition method(KGTLIR)based on Knowledge Graph and Deep Learning.Firstly,the intention recognition model based on Deep Learning is constructed to mine the temporal relationship of intention features using dilated causal convolution and the spatial relationship of intention features using a graph attention mechanism.Meanwhile,the accuracy,recall,and F1-score after iteration are introduced to dynamically adjust the sample weights to reduce the probability of misclassification.After that,an intention recognition model based on Knowledge Graph is constructed to predict the probability of the occurrence of different intentions of the target.Finally,the results of the two models are fused by evidence theory to obtain the target’s operational intention.Experiments show that the intention recognition accuracy of the KGTLIRmodel can reach 98.48%,which is not only better than most of the air target intention recognition methods,but also demonstrates better interpretability and trustworthiness. 展开更多
关键词 Dilated causal convolution graph attention mechanism intention recognition air targets knowledge graph
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部