期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
面向目标交互图神经网络的多模态方面级情感分析
1
作者 张丽霞 汪凯旋 +1 位作者 庞梓超 梁云 《计算机工程与应用》 CSCD 北大核心 2024年第23期136-145,共10页
对于多模态方面级情感分析任务,除了需要提取出文本和图像的表示,还需要将它们与方面语义信息相结合处理。然而,以往的相关方法对方面与文本和图像信息之间的交互处理不够充分,即使使用注意力机制建立起模态全局之间的关联,也难以在细... 对于多模态方面级情感分析任务,除了需要提取出文本和图像的表示,还需要将它们与方面语义信息相结合处理。然而,以往的相关方法对方面与文本和图像信息之间的交互处理不够充分,即使使用注意力机制建立起模态全局之间的关联,也难以在细粒度表达出它们的交互。为了充分进行多模态之间细粒度上的信息交互,提出一种面向目标交互图神经网络,围绕文本、图像和方面三者的关系建模,采用交叉注意力获取面向方面目标的文本和图像全局表示;建立多模态交互图,以连接不同模态的局部及全局表示节点;使用图注意力网络在粗细两个粒度上充分融合特征。在两个基准数据集上进行实验,结果表明该模型相比于仅使用注意力机制的模型,具有更佳的情感分类效果。 展开更多
关键词 多模态方面级情感分析 注意力机制 交叉注意力 面向目标交互 图注意力网络
下载PDF
多源知识融合的方面级情感分析模型
2
作者 韩虎 郝俊 +1 位作者 张千锟 赵启涛 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第9期2688-2695,共8页
方面级情感分析(ABSA)是一项细粒度情感分析任务,其目的是针对评论语句中出现的特定方面给出对应的情感极性。现有的基于深度学习的ABSA方法大多侧重于评论语句语义和句法的挖掘,往往忽略了评论语句可能涉及的概念知识和情感程度信息。... 方面级情感分析(ABSA)是一项细粒度情感分析任务,其目的是针对评论语句中出现的特定方面给出对应的情感极性。现有的基于深度学习的ABSA方法大多侧重于评论语句语义和句法的挖掘,往往忽略了评论语句可能涉及的概念知识和情感程度信息。针对此问题,提出一种融合多源知识的神经网络模型,通过句法依赖揭示句子的结构框架、词共现捕捉单词之间的语义联系、情感网络和概念图谱的嵌入为模型提供情感和背景知识,共同实现评论语句上下文与评价方面的增强表示,并通过双交互注意力模式实现评论语句上下文与评价方面的协调优化。通过在4个公开数据集上的实验验证,该模型在ABSA任务中,准确率分别达到了75.00%、77.90%、81.55%、90.10%,与基准模型相比均有所提高。研究成果不仅验证了多源知识融合在ABSA任务中的有效性,也为未来的研究提供了新的思路和方法。 展开更多
关键词 方面级情感分析 图卷积网络 多源融合 知识图谱 交互注意力机制
下载PDF
基于句法依赖增强图的方面级情感分析
3
作者 廖列法 夏卫欢 杨翌虢 《计算机工程与设计》 北大核心 2024年第6期1857-1864,共8页
方面级情感分析旨在分析句子中特定方面的情感极性,现有研究侧重于利用图神经网络建模上下文与方面的依赖信息,忽略了对上下文中情感词及其词性的挖掘和利用。为此,提出一种基于句法依赖的增强图(syntactic dependency enhancement grap... 方面级情感分析旨在分析句子中特定方面的情感极性,现有研究侧重于利用图神经网络建模上下文与方面的依赖信息,忽略了对上下文中情感词及其词性的挖掘和利用。为此,提出一种基于句法依赖的增强图(syntactic dependency enhancement graph, SDEG)模型,在原始句法依赖图上引入情感知识和词性信息,增强情感词权重和相关词性单词在上下文中的作用。使用双向长短期记忆网络和卷积神经网络捕捉句子的重点语义信息,通过图卷积神经网络建模句法依赖增强图,通过交互注意力机制生成特定方面的上下文语义和语法表示以进行情感极性分类。在多个公共基准数据集上的实验结果表明,所提模型在性能上有明显提升。 展开更多
关键词 方面级情感分析 情感知识 词性 双向长短期记忆网络 卷积神经网络 图卷积神经网络 交互注意力机制
下载PDF
基于偏置交叉注意力的点云配准算法
4
作者 李新 董璐语 +1 位作者 宋刘广 孙钰琦 《软件导刊》 2024年第2期25-31,共7页
点云配准对机器视觉、人工智能等领域的发展起到了重要作用。针对传统点云配准算法与现有深度学习点云配准算法精度低和鲁棒性差的问题,提出一种基于偏置交叉注意力的点云配准网络模型OCADGCNN。该模型在动态图卷积神经网络(DGCNN)中插... 点云配准对机器视觉、人工智能等领域的发展起到了重要作用。针对传统点云配准算法与现有深度学习点云配准算法精度低和鲁棒性差的问题,提出一种基于偏置交叉注意力的点云配准网络模型OCADGCNN。该模型在动态图卷积神经网络(DGCNN)中插入偏置注意力模块用于提取全局特征向量,充分利用点云的局部结构信息和空间语义信息以减少信息损失;在特征提取中加入残差连接以提高网络性能;使用交互注意力模块实现全局特征之间的信息交换,以增强相关信息,抑制非重叠区域信息的干扰。实验结果显示,OCADGCNN模型在无噪和少量噪声的ModleNet40数据集中配准效果均优于ICP、PointNetLK、PCRNet、OMNet和DOPNet等配准方法,配准精度较高。在未知类别的实验中,OCADGCNN模型泛化能力较高,通用性良好,在点云完整度降低的情况下能够较好地处理低重叠度点云。 展开更多
关键词 点云 配准 深度学习 注意力机制 动态图卷积 特征交互
下载PDF
基于动态图注意力的车辆轨迹预测研究 被引量:1
5
作者 陈晓伟 李煊鹏 张为公 《汽车技术》 CSCD 北大核心 2024年第3期24-30,共7页
针对目前轨迹预测研究中交互建模方法使用的图注意力网络(GAT)为静态注意力,无法有效捕捉复杂道路场景中车辆间交互的问题,提出了一种基于编码器-解码器架构的动态图注意力网络(ED-DGAT)预测高速公路环境中运动车辆的未来轨迹。编码模... 针对目前轨迹预测研究中交互建模方法使用的图注意力网络(GAT)为静态注意力,无法有效捕捉复杂道路场景中车辆间交互的问题,提出了一种基于编码器-解码器架构的动态图注意力网络(ED-DGAT)预测高速公路环境中运动车辆的未来轨迹。编码模块使用动态图注意力机制学习场景中车辆间的空间交互,采用状态简化动态图注意力网络建模解码阶段车辆运动的相互依赖,最后使用NGSIM数据集评估所提出的模型,并与长短时记忆(LSTM)、联合社交池化与长短时记忆(S-LSTM)、联合卷积社交池化与长短时记忆(CS-LSTM)算法模型进行对比分析,结果表明,预测轨迹的均方根误差(RMSE)降低了25%,且模型的推理速度为CS-LSTM模型的2.61倍。 展开更多
关键词 轨迹预测 注意力机制 图神经网络 多目标交互
下载PDF
融合实体语义及结构信息的知识图谱推理
6
作者 王利琴 张特 +2 位作者 许智宏 董永峰 杨国伟 《计算机应用》 CSCD 北大核心 2024年第11期3371-3378,共8页
目前,图注意力网络(GAT)通过引入注意力机制对目标实体的邻域实体赋予不同权重并进行信息聚合,使得它更关注实体的局部邻域,忽略了图结构中实体和关系之间的拓扑结构;而且在多头注意力后将输出嵌入向量简单拼接或平均,导致注意力头之间... 目前,图注意力网络(GAT)通过引入注意力机制对目标实体的邻域实体赋予不同权重并进行信息聚合,使得它更关注实体的局部邻域,忽略了图结构中实体和关系之间的拓扑结构;而且在多头注意力后将输出嵌入向量简单拼接或平均,导致注意力头之间相互独立,未能捕捉不同注意力头的重要语义信息。针对GAT应用于知识图谱(KG)推理任务时未充分挖掘实体结构信息和语义信息的问题,提出融合实体语义及结构信息的知识图谱推理(FESSI)模型。首先,使用TransE将实体和关系表示为同一空间的嵌入向量。其次,提出交互注意力机制,将GAT中多头注意力重新融合成多个混合注意力,增强注意力头之间的交互性,以提取目标实体更丰富的语义信息;同时,利用关系图卷积网络(R-GCN)提取实体的结构信息,并通过权重矩阵学习GAT和R-GCN的输出特征向量。最后,使用ConvKB作为解码器进行评分。在知识图谱数据集Kinship、NELL-995和FB15K-237上的实验结果表明,FESSI模型的效果优于多数对比模型,在3个数据集的平均倒数排名(MRR)指标上的结果分别为0.964、0.565和0.562。 展开更多
关键词 知识图谱 知识图谱推理 关系图卷积网络 图注意力网络 交互注意力机制
下载PDF
CMHICL:基于跨模态分层交互网络和对比学习的多模态讽刺检测
7
作者 林洁霞 朱小栋 《计算机应用研究》 CSCD 北大核心 2024年第9期2620-2627,共8页
多模态讽刺检测的关键在于有效地对齐和融合不同模态的特征。然而,现有融合方法通常忽略多模态间组成结构的关系,并且在识别讽刺时也经常忽略多模态数据中与讽刺情感相关的共同特征的重要性。因此,提出一种基于跨模态分层交互网络和对... 多模态讽刺检测的关键在于有效地对齐和融合不同模态的特征。然而,现有融合方法通常忽略多模态间组成结构的关系,并且在识别讽刺时也经常忽略多模态数据中与讽刺情感相关的共同特征的重要性。因此,提出一种基于跨模态分层交互网络和对比学习的模型。首先,跨模态分层交互网络采用了基于交叉注意力机制的最小单元对齐模块和基于图注意力网络的组成结构融合模块,从不同层面上识别文本和图像之间的不一致性,将低一致性的样本判定为含讽刺意味的样本。其次,该模型通过数据增强和类别增强两个对比学习任务,帮助学习讽刺相关的共同特征。实验结果表明,所提模型与基线模型相比,准确率提升了0.81%,F_(1)值提升了1.6%,验证了提出的分层交互网络和对比学习方法在多模态讽刺检测中的关键作用。 展开更多
关键词 多模态讽刺检测 分层交互 对比学习 交叉注意力机制 图注意力网络
下载PDF
基于人工智能SGRN-Trans框架预测温胆汤中成分-靶点相互作用的研究
8
作者 王艳菁 李治琦 +2 位作者 魏冬青 徐威 谭红胜 《重庆医科大学学报》 CAS CSCD 北大核心 2024年第8期1002-1011,共10页
目的:以温胆汤为例,构建基于知识图谱和注意力机制的深度学习模型(SGRN-Trans)预测中医经典名方中药效成分与靶点的相互作用,评价其预测效果。方法:首次提出SGRN-Trans(Self-weighted Graph Relational Network-Transformer)预测模型,... 目的:以温胆汤为例,构建基于知识图谱和注意力机制的深度学习模型(SGRN-Trans)预测中医经典名方中药效成分与靶点的相互作用,评价其预测效果。方法:首次提出SGRN-Trans(Self-weighted Graph Relational Network-Transformer)预测模型,结合多生物数据源构建中医经典名方温胆汤知识图谱(Wendan Decoction Knowledge Graph,WDKG),利用图神经网络学习知识图谱中每个实体的低维嵌入表示,引入中药成分和靶点各自的结构特征,搭载基于注意力机制的Transformer模型进行药效成分-靶点相互作用的预测,结合分子对接及文献调研进行验证。结果:WDKG包含10个类型共14292个实体,可用于深度学习模型的研究。SGRN-Trans预测模型与TransE、TransR、ComplEx、DistMult、ConvKB等其他知识图谱嵌入模型的性能相比,效果最优。将预测排序前20组的药效成分与靶点分别进行分子对接和可视化呈现,其中8组的结合能提示其药效成分与靶点有潜在的相互作用。以温胆汤中半夏的有效成分soya-cerebroside(大豆脑苷脂)与低密度脂蛋白受体(low density lipoprotein receptor,LDLR)相互作用为例,结合研究文献进行讨论,可能是温胆汤治疗动脉粥样硬化的机制之一。结论:本研究提出基于知识图谱和注意力机制的模型SGRN-Trans,可推广用于预测中医药经典名方复杂网络体系中成分与靶点的相互作用,为阐明经典名方的药效物质基础和作用机制提供新的工具。 展开更多
关键词 温胆汤 药物-靶点相互作用 知识图谱 图神经网络 注意力机制
下载PDF
融合实体与关系交互信息的知识感知推荐模型
9
作者 姚静 吕腾 《电子测量技术》 北大核心 2024年第1期9-16,共8页
由于知识图谱包含了丰富的项目属性及其关联信息,因此在推荐系统中引入知识图谱能在一定程度上解决数据稀疏和冷启动问题。如基于传播的推荐系统就利用了知识图谱的图结构学习用户及项目表示等相关特征。但在传播过程中,往往忽略了实体... 由于知识图谱包含了丰富的项目属性及其关联信息,因此在推荐系统中引入知识图谱能在一定程度上解决数据稀疏和冷启动问题。如基于传播的推荐系统就利用了知识图谱的图结构学习用户及项目表示等相关特征。但在传播过程中,往往忽略了实体与关系之间的交互信息对特征表示的贡献,由此提出一种融合实体与关系交互信息的知识感知推荐模型。首先,将协同信息和知识关联整合,采用异构传播方式传播并扩展用户和项目的表示。其次,在传播过程中用注意力机制强化实体与关系之间的交互信息,增强语义关联,保证用户和项目基于知识的高阶交互的有效性。然后采用知识感知注意力机制来区分每层中实体邻居的重要性,更精确地生成用户和项目的表示。最后通过聚合器将多个表示结合得到用户和项目的最终表示,从而预测用户与项目进行交互的概率。通过添加KL散度损失函数对模型进行优化,以对齐模型的预测分布和真实分布之间的差异。在Last.FM、Book-Crossing和MovieLens-20M 3个数据集上进行的实验结果表明该模型在CTR预测性能中比其他基线模型有较大提升。 展开更多
关键词 推荐系统 知识图谱 交互信息 注意力机制
下载PDF
基于MHSA和GCN的方面级情感分析模型
10
作者 杨乾 艾山·吾买尔 +1 位作者 孙伟伟 古文霞 《东北师大学报(自然科学版)》 CAS 北大核心 2024年第2期69-74,共6页
针对目前大多数现有的基于图卷积网络的模型只考虑了特定方面和上下文之间的交互关系,忽略了方面之间的交互情感特征的问题,本文提出了一种利用预训练BERT和多头自注意力机制(MHSA)结合图卷积网络的模型(MHSAGCN-BERT).用方面词与上下... 针对目前大多数现有的基于图卷积网络的模型只考虑了特定方面和上下文之间的交互关系,忽略了方面之间的交互情感特征的问题,本文提出了一种利用预训练BERT和多头自注意力机制(MHSA)结合图卷积网络的模型(MHSAGCN-BERT).用方面词与上下文的句法依赖和方面之间的相互情感关系来推导出特定方面的情感极性,以此增强模型学习特征能力.在Restaurant14、Restaurant15、Restaurant16公开数据集上进行了实验,结果表明,本文模型与其他方面级情感分析模型相比有较明显的提升. 展开更多
关键词 方面级情感分析 多头自注意力机制 图卷积网络 方面交互 句法依赖树
下载PDF
知识增强的交互注意力方面级情感分析模型 被引量:3
11
作者 韩虎 郝俊 +1 位作者 张千锟 孟甜甜 《计算机科学与探索》 CSCD 北大核心 2023年第3期709-718,共10页
方面级情感分析(ABSA)已经成为自然语言处理领域的研究热点,与传统的情感分析技术相比,基于方面的情感分析能够判断句子中多个方面的情感倾向,可以更加准确地挖掘用户对方面的情感极性。当前,将注意力机制和神经网络相结合的模型在解决... 方面级情感分析(ABSA)已经成为自然语言处理领域的研究热点,与传统的情感分析技术相比,基于方面的情感分析能够判断句子中多个方面的情感倾向,可以更加准确地挖掘用户对方面的情感极性。当前,将注意力机制和神经网络相结合的模型在解决方面级情感分析任务时大多仅考虑方面对上下文的影响,且时常忽略句子中的相关语法信息和背景知识。针对上述问题,提出一种借助知识图谱和图卷积网络的交互注意力神经网络模型,为评论文本注入背景信息和语言知识。首先,利用知识图谱解决词汇在不同语境下的一词多义性问题。其次,利用文本图卷积网络完善评论语句的语法结构信息。最后,通过交互注意力机制实现评论文本上下文与评价方面的协调优化。最终在五个公开数据集上的实验结果表明,合理利用外部知识是改善方面级情感分析模型性能的有效策略。 展开更多
关键词 知识图谱 词汇句法关系 图神经网络 方面级情感分析 交互注意力机制
下载PDF
基于BiGCN和IAM的方面级情感分类模型 被引量:4
12
作者 杨春霞 瞿涛 吴佳君 《计算机工程与应用》 CSCD 北大核心 2022年第11期178-186,共9页
目前基于神经网络的方面级情感分类模型很少会考虑上下文单词与方面词之间的句法依存关系,可能会错误地将与方面词语法无关的上下文单词作为方面词的情感特征;另一方面大多数方法也忽略了上下文与方面词之间的交互信息。针对这两个问题... 目前基于神经网络的方面级情感分类模型很少会考虑上下文单词与方面词之间的句法依存关系,可能会错误地将与方面词语法无关的上下文单词作为方面词的情感特征;另一方面大多数方法也忽略了上下文与方面词之间的交互信息。针对这两个问题,提出了基于双向图卷积网络(BiGCN)和交互注意力机制(IAM)的方面级情感分类模型(BiGCN-IAM),该模型在句法依存树上使用双向图卷积网络提取上下文单词和方面词之间的句法依存关系,然后使用掩码层得到特定的方面词表示;最后使用交互注意力机制学习上下文与方面词之间的交互信息,同时提取了上下文中的重要情感特征和方面词中对分类有贡献的特征。通过在五个公开数据集上的实验证明,该模型效果优于基线模型。 展开更多
关键词 方面级情感分类 交互注意力机制 双向图卷积神经网络 句法依存树
下载PDF
基于交互注意力和图卷积网络的方面级情感分析 被引量:6
13
作者 王娅丽 张凡 +1 位作者 余增 李天瑞 《计算机科学》 CSCD 北大核心 2023年第4期196-203,共8页
方面级情感分析是细粒度情感分析中的一项关键任务,旨在预测一个句子中不同方面术语的情感倾向。针对目前结合图卷积网络的研究忽略方面术语本身的含义以及方面术语与上下文之间的交互的问题,文中提出了基于交互注意力和图卷积网络的模... 方面级情感分析是细粒度情感分析中的一项关键任务,旨在预测一个句子中不同方面术语的情感倾向。针对目前结合图卷积网络的研究忽略方面术语本身的含义以及方面术语与上下文之间的交互的问题,文中提出了基于交互注意力和图卷积网络的模型(Interactive Attention Graph Convolution Network,IAGCN)。该模型首先结合BiLSTM和修正动态权重层对上下文进行建模,其次在句法依存树上使用图卷积网络对句法信息进行编码,然后利用交互注意力机制学习上下文和方面术语中的注意力,重构上下文和方面术语的表示,最后通过softmax层获取给定方面术语的情感极性。与基线模型相比,所提模型在5个数据集中的准确率和F1值分别提高了0.56%~1.75%和1.34%~4.04%。同时,将预训练模型BERT应用到此任务中,相比基于GloVe的IAGCN模型,其准确率和F1值分别提高了1.47%~3.95%和2.59%~7.55%,模型效果有了进一步的提升。 展开更多
关键词 方面级情感分析 深度学习 图卷积网络 交互注意力机制 BERT
下载PDF
基于图的人-物交互识别 被引量:2
14
作者 吴伟 刘泽宇 《计算机工程与应用》 CSCD 北大核心 2021年第3期175-181,共7页
提出了一种基于图的人与物体的交互(Human-Object Interactions,HOIs)识别方法。为了对静态图像中人与物体间丰富的交互关系进行有效的表示,采用具有强大关系建模能力的图结构为图像生成对应的人-物交互关系图。为了对图像中上下文(cont... 提出了一种基于图的人与物体的交互(Human-Object Interactions,HOIs)识别方法。为了对静态图像中人与物体间丰富的交互关系进行有效的表示,采用具有强大关系建模能力的图结构为图像生成对应的人-物交互关系图。为了对图像中上下文(context)信息加以利用,提出了引入注意力机制的特征处理网络(Feature Processing Network,FPNet)。通过图注意力(Graph Attention Network,GAT)网络完成对真实的HOIs的检测和识别。该方法在V-COCO数据集与HICO-DET数据集上进行了验证,并与其他方法进行了比较,结果表明该方法具有较好的效果。 展开更多
关键词 人-物交互 上下文 注意力机制 图注意力网络
下载PDF
基于音视频特征融合的情感识别方法研究 被引量:2
15
作者 帖云 程慧杰 +2 位作者 靳聪 李小兵 齐林 《重庆理工大学学报(自然科学)》 CAS 北大核心 2022年第1期120-127,共8页
传统的视频情感识别工作主要集中在面部表情、人体的动作行为等,忽略了场景和对象中包含大量的情感线索及不同对象之间的情感关联。因此,提出了一个基于视觉关系推理和跨模态信息学习的音视频特征融合网络模型用于预测视频情感。模型主... 传统的视频情感识别工作主要集中在面部表情、人体的动作行为等,忽略了场景和对象中包含大量的情感线索及不同对象之间的情感关联。因此,提出了一个基于视觉关系推理和跨模态信息学习的音视频特征融合网络模型用于预测视频情感。模型主要包括三部分:对象间的情感关系推理、声学特征提取、跨模态交互融合。首先,采用Mask R-CNN模型提取出包含物体的区域并提取出相应的特征序列,利用图注意力网络对视频帧中的不同区域之间的情感关联进行推理,找到视频帧中的关键区域;然后,利用双向长短时记忆网络提取对数梅尔频谱片段的帧级上下文信息,对视觉信息进行补充;最后,将多头注意力机制应用到跨模态交互融合模块中去学习不同模态信息之间的隐藏关联,并将利用跨模态注意得到的音视频特征利用门控神经网络进行融合。所提出的模型在数据集Video Emotion-8和Ekman上具有较好的精确度。 展开更多
关键词 情感识别 情感关系推理 跨模态交互 图卷积神经网络 多头注意力机制
下载PDF
融合图卷积注意力机制的协同过滤推荐方法 被引量:1
16
作者 朱金侠 孟祥福 +1 位作者 邢长征 张霄雁 《智能系统学报》 CSCD 北大核心 2023年第6期1295-1304,共10页
图卷积神经网络(graph convolutional neural network,GCN)因其强大的建模能力引起了广泛关注,在商品推荐中,现有的图卷积协同过滤技术忽略了邻居节点在传播聚合过程中的重要性,使得用户和商品的嵌入向量表达不够合理。为了解决这一问题... 图卷积神经网络(graph convolutional neural network,GCN)因其强大的建模能力引起了广泛关注,在商品推荐中,现有的图卷积协同过滤技术忽略了邻居节点在传播聚合过程中的重要性,使得用户和商品的嵌入向量表达不够合理。为了解决这一问题,本文提出一种融合图卷积注意力机制的协同过滤推荐模型。首先通过图嵌入技术将用户-项目的交互信息映射到低维稠密的向量空间;其次通过堆叠多层的图卷积网络学习用户与项目间的高阶交互信息;同时融合注意力机制为邻居节点自适应地分配权重,不仅可以捕获更具代表性的邻居影响,还使得在聚合邻居节点的特征信息时,仅依赖于节点之间的特征表达,使其独立于图结构,提高了模型的泛化能力;最后设计了分层聚合函数,将图卷积层学习到的多个嵌入向量加权聚合,使用内积函数得到用户-项目之间的关联分数。在3个真实数据上进行的泛化实验,实验结果验证了该方法的有效性。 展开更多
关键词 图嵌入技术 图卷积神经网络 注意力机制 协同过滤 用户偏好 高阶交互 邻域聚合
下载PDF
面向方面级情感分析的交互关系图注意力网络 被引量:1
17
作者 郑智雄 刘建华 +2 位作者 孙水华 林鸿辉 徐戈 《计算机工程与应用》 CSCD 北大核心 2023年第15期187-195,共9页
方面级别情感分析旨在分析网络评论每个方面的情感极性,是一种细粒度的情感分析技术。已经有许多相关研究把语法依赖树与图注意力网络结合应用到该任务,取得了较好的成绩。针对以往研究忽略关系类型信息,没有充分挖掘关系类型所包含的... 方面级别情感分析旨在分析网络评论每个方面的情感极性,是一种细粒度的情感分析技术。已经有许多相关研究把语法依赖树与图注意力网络结合应用到该任务,取得了较好的成绩。针对以往研究忽略关系类型信息,没有充分挖掘关系类型所包含的潜在语义信息,以及忽略了依赖关系和关系类型之间的联系等问题,提出了一种基于图注意力网络的交互关系图注意力网络模型(interactive relation graph attention network,IRGAT)。该模型提取关系类型的特征信息,使其与图注意力网络提取的上下文特征信息交互学习,使它们相互联系,强化各自的特征表示能力。通过方面注意力机制融合特征,再使用分类器捕获情感分类结果。该模型在四个公开数据集上进行了实验,实验结果表明,与现有的方面级情感分析模型相比,IRGAT模型的预测准确率和MF1值分别平均提升了1.52和1.56个百分点。 展开更多
关键词 神经网络 方面级情感分析 语法依赖树 交互注意力机制 图注意力网络
下载PDF
融合交互注意力和参数自适应的商品会话推荐 被引量:4
18
作者 郑楠 过弋 +1 位作者 李智强 王志宏 《中文信息学报》 CSCD 北大核心 2022年第11期131-139,共9页
在电商场景中,用户面对繁杂的商品时往往难以快速检索到所需商品,而基于会话的商品推荐能通过学习用户短期兴趣从而为其推荐可能感兴趣的商品,因此基于会话的推荐研究具有显著的理论和应用研究价值。已有的会话推荐算法大多关注于利用... 在电商场景中,用户面对繁杂的商品时往往难以快速检索到所需商品,而基于会话的商品推荐能通过学习用户短期兴趣从而为其推荐可能感兴趣的商品,因此基于会话的推荐研究具有显著的理论和应用研究价值。已有的会话推荐算法大多关注于利用全局图中的信息来增强会话图中的表征学习,而忽略了会话图和全局图上物品表征之间的交互关系。该文提出一种通过交互注意力和改进参数自适应策略增强的图神经网络商品会话推荐模型。交互注意层通过提取强相关信息来修正全局图和会话图中的商品表示,而参数自适应层则通过改进参数自适应策略动态权重调整以获得物品的最终表示进而用于预测。实验结果表明,该文所提出的模型在Tmall数据集上显著优于对比模型。 展开更多
关键词 会话推荐 图神经网络 交互注意力机制 改进参数自适应
下载PDF
基于交互注意力图卷积网络的方面情感分类 被引量:2
19
作者 潘志豪 曾碧 +2 位作者 廖文雄 魏鹏飞 文松 《计算机科学》 CSCD 北大核心 2022年第3期294-300,共7页
基于方面的情感分类任务旨在识别句子中给定方面词的情感倾向性。以往的方法大多基于长短时记忆网络和注意力机制,这种做法在很大程度上仅依赖于建模句子中的方面词与其上下文的语义相关性,但忽略了句中的语法信息。针对这种缺陷,提出... 基于方面的情感分类任务旨在识别句子中给定方面词的情感倾向性。以往的方法大多基于长短时记忆网络和注意力机制,这种做法在很大程度上仅依赖于建模句子中的方面词与其上下文的语义相关性,但忽略了句中的语法信息。针对这种缺陷,提出了一种交互注意力的图卷积网络,同时建模了句中单词的语义相关性和语法相关性。首先使用双向长短时记忆网络来学习句子的词序关系,捕捉句中上下文的语义信息;其次引入位置信息后,通过图卷积网络来学习句中的语法信息;然后通过一种掩码机制提取方面词;最后使用交互注意力机制,交互计算特定方面的上下文表示,并将其作为最后的分类特征。通过这种优势互补的设计,该模型可以很好地获得聚合了目标方面信息的上下文表示,并有助于情感分类。实验结果表明,该模型在多个数据集上都获得了优秀的效果。与未考虑语法信息的Bi-IAN模型相比,该模型在所有数据集上的结果均优于Bi-IAN模型,尤其在餐厅领域的REST14,REST15和REST16数据集上,该模型的F1值较Bi-IAN模型分别提高了4.17%,7.98%和8.03%;与同样考虑了语义信息和语法信息的ASGCN模型相比,该模型的F1值在除了LAP14数据集外的其他数据集上均优于ASGCN模型,尤其在餐厅领域的REST14,REST15和REST16数据集上,该模型的F1值较ASGCN模型分别提高了2.05%,1.66%和2.77%。 展开更多
关键词 交互注意力机制 双向长短时记忆网络 图卷积网络 方面情感分类 语义信息 语法信息
下载PDF
基于AWI和GCN的方面级情感分类模型 被引量:1
20
作者 王泽 孔韦韦 +2 位作者 薛佳伟 平稳 李龙 《计算机工程与应用》 CSCD 北大核心 2023年第3期135-142,共8页
目前大多数方面级情感分类研究都忽略了方面词的建模,以及方面词与上下文之间的交互信息,并且难以体现语法上与方面词有直接联系上下文单词的重要程度。针对上述问题,提出基于方面词交互(aspect word interaction,AWI)和图卷积网络(grap... 目前大多数方面级情感分类研究都忽略了方面词的建模,以及方面词与上下文之间的交互信息,并且难以体现语法上与方面词有直接联系上下文单词的重要程度。针对上述问题,提出基于方面词交互(aspect word interaction,AWI)和图卷积网络(graph convolutional network,GCN)的方面级情感分类模型(AWI-GCN)。使用双向长短期记忆网络(bi-directional long short-term memory,Bi-LSTM)分别提取方面词和上下文的特征;采用GCN根据句法依存树进一步提取与方面词有直接语法联系的上下文情感特征;利用注意力机制学习方面词与上下文的交互信息,同时提取上下文中为方面词情感分类做出重要贡献的情感特征。针对3个公开数据集上的仿真实验结果表明,AWI-GCN模型相比当前代表模型取得了更好的情感分类效果。 展开更多
关键词 方面级情感分类 方面词交互 图卷积网络 注意力机制 句法依存树
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部