期刊文献+
共找到66篇文章
< 1 2 4 >
每页显示 20 50 100
Deep convolutional adversarial graph autoencoder using positive pointwise mutual information for graph embedding
1
作者 MA Xiuhui WANG Rong +3 位作者 CHEN Shudong DU Rong ZHU Danyang ZHAO Hua 《High Technology Letters》 EI CAS 2022年第1期98-106,共9页
Graph embedding aims to map the high-dimensional nodes to a low-dimensional space and learns the graph relationship from its latent representations.Most existing graph embedding methods focus on the topological struct... Graph embedding aims to map the high-dimensional nodes to a low-dimensional space and learns the graph relationship from its latent representations.Most existing graph embedding methods focus on the topological structure of graph data,but ignore the semantic information of graph data,which results in the unsatisfied performance in practical applications.To overcome the problem,this paper proposes a novel deep convolutional adversarial graph autoencoder(GAE)model.To embed the semantic information between nodes in the graph data,the random walk strategy is first used to construct the positive pointwise mutual information(PPMI)matrix,then,graph convolutional net-work(GCN)is employed to encode the PPMI matrix and node content into the latent representation.Finally,the learned latent representation is used to reconstruct the topological structure of the graph data by decoder.Furthermore,the deep convolutional adversarial training algorithm is introduced to make the learned latent representation conform to the prior distribution better.The state-of-the-art experimental results on the graph data validate the effectiveness of the proposed model in the link prediction,node clustering and graph visualization tasks for three standard datasets,Cora,Citeseer and Pubmed. 展开更多
关键词 graph autoencoder(gae) positive pointwise mutual information(PPMI) deep convolutional generative adversarial network(DCGAN) graph convolutional network(GCN) se-mantic information
下载PDF
基于异常感知的变分图自编码器的图级异常检测算法
2
作者 林馥 李明康 +3 位作者 罗学雄 张书豪 张越 王梓桐 《计算机研究与发展》 EI CSCD 北大核心 2024年第8期1968-1981,共14页
图异常检测在识别复杂数据结构的异常模式中具有重要作用,被广泛地应用于有害分子识别、金融欺诈检测、社交网络分析等领域.但目前的图异常检测研究大多数聚焦在节点级别的异常检测,针对图级别的异常检测方法仍然较少,且这些方法并不能... 图异常检测在识别复杂数据结构的异常模式中具有重要作用,被广泛地应用于有害分子识别、金融欺诈检测、社交网络分析等领域.但目前的图异常检测研究大多数聚焦在节点级别的异常检测,针对图级别的异常检测方法仍然较少,且这些方法并不能对异常图数据进行充分挖掘,且对异常标签比较敏感,无法有效地捕捉异常样本的特征,存在模型泛化能力差、性能翻转问题,异常检测能力有待提升.提出了一种基于异常感知的变分图自编码器的图级异常检测算法(anomaly-aware variational graph autoencoder based graph-level anomaly detection algorithm,VGAE-D),利用具有异常感知能力的变分图自编码器提取正常图和异常图数据的特征,并差异化正常图和异常图在编码空间中的编码信息分布,对图编码信息进一步挖掘来计算图的异常得分.在不同领域的8个公开数据集上进行实验,实验结果表明,提出的图级别异常检测方法能有效地对不同数据集中的异常图进行识别,异常检测性能高于目前主流的图级别异常方法,且具有少异常样本学习能力,较大程度上克服了性能翻转问题. 展开更多
关键词 图级别异常检测 图神经网络 变分图自编码器 图表示学习 少样本学习
下载PDF
结合重构和图预测的多元时序异常检测框架
3
作者 吴彦文 谭溪晨 +3 位作者 葛迪 韩园 熊栩捷 陈宇迪 《计算机工程与应用》 CSCD 北大核心 2024年第13期301-310,共10页
高维时序异常检测一直是智能系统安全领域的重要挑战,主流解决方案通常使用基于数据降维的重构方法和基于时序建模的预测方法,但这些方法没有结合特征间相互影响和特征内时间关联进行学习,且大多使用点估计方法进行预测或重构,从而影响... 高维时序异常检测一直是智能系统安全领域的重要挑战,主流解决方案通常使用基于数据降维的重构方法和基于时序建模的预测方法,但这些方法没有结合特征间相互影响和特征内时间关联进行学习,且大多使用点估计方法进行预测或重构,从而影响了异常检测的准确性。结合预测和重构的优点,考虑序列的整体分布,提出了一种新颖的端到端异常检测框架。设计改进的变分自动编码器重构模块,以学习原始时序数据中的特征内时间关联,同时得到编码后的低维表示。设计估计高斯分布的图神经网络预测模块,结合重构模块的低维表示和原始输入进行图结构学习,以捕捉特征间的结构依赖。模型采用异常评分模块联合重构和预测模块的损失,在考虑序列整体分布的基础上进行时空联合表征。为验证所提出模型的性能,在三个工业数据集上对模型进行了对比实验,与基线模型相比,所提出的模型在F1性能指标上表现良好。 展开更多
关键词 多元时序数据 图神经网络 自编码器 异常检测
下载PDF
Inherent-attribute-aware dual-graph autoencoder for rating prediction 被引量:2
4
作者 Yangtao Zhou Qingshan Li +5 位作者 Hua Chu Jianan Li Lejia Yang Biaobiao Wei Luqiao Wang Wanqiang Yang 《Journal of Information and Intelligence》 2024年第1期82-97,共16页
Autoencoder-based rating prediction methods with external attributes have received wide attention due to their ability to accurately capture users'preferences.However,existing methods still have two significant li... Autoencoder-based rating prediction methods with external attributes have received wide attention due to their ability to accurately capture users'preferences.However,existing methods still have two significant limitations:i)External attributes are often unavailable in the real world due to privacy issues,leading to low quality of representations;and ii)existing methods lack considering complex associations in users'rating behaviors during the encoding process.To meet these challenges,this paper innovatively proposes an inherent-attribute-aware dual-graph autoencoder,named IADGAE,for rating prediction.To address the low quality of representations due to the unavailability of external attributes,we propose an inherent attribute perception module that mines inductive user active patterns and item popularity patterns from users'rating behaviors to strengthen user and item representations.To exploit the complex associations hidden in users’rating behaviors,we design an encoder on the item-item co-occurrence graph to capture the co-occurrence frequency features among items.Moreover,we propose a dual-graph feature encoder framework to simultaneously encode and fuse the high-order representations learned from the user-item rating graph and item-item co-occurrence graph.Extensive experiments on three real datasets demonstrate that IADGAE is effective and outperforms existing rating prediction methods,which achieves a significant improvement of 4.51%~41.63%in the RMSE metric. 展开更多
关键词 Rating prediction graph convolutional network autoencoder Inherent attribute aware
原文传递
深层图注意力对抗变分自动编码器
5
作者 翁自强 张维玉 孙旭 《计算机应用与软件》 北大核心 2024年第9期156-165,共10页
现有的图自动编码器忽视了图邻居节点的差异和图潜在的数据分布。为了提高图自动编码器嵌入能力,提出图注意力对抗变分自动编码器(AAVGA-d),该方法将注意力引入编码器,并在嵌入训练中使用对抗机制。图注意力编码器实现了对邻居节点权重... 现有的图自动编码器忽视了图邻居节点的差异和图潜在的数据分布。为了提高图自动编码器嵌入能力,提出图注意力对抗变分自动编码器(AAVGA-d),该方法将注意力引入编码器,并在嵌入训练中使用对抗机制。图注意力编码器实现了对邻居节点权重的自适应分配,对抗正则化使编码器生成的嵌入向量分布接近数据的真实分布。为了加深图注意力层数,设计一种针对注意力网络的随机边删除技术(RDEdge),减少了层数过深引起的过平滑信息丢失。实验结果表明,AAVGA-d的图嵌入能力与目前流行的图自动编码器相比具有竞争优势。 展开更多
关键词 图注意力 过平滑 自动编码器 对抗
下载PDF
基于图嵌入编码形态信息的非均匀多任务强化学习方法
6
作者 贺晓 王文学 《计算机应用研究》 CSCD 北大核心 2024年第4期1022-1028,共7页
传统强化学习方法存在效率低下、泛化性能差、策略模型不可迁移的问题。针对此问题,提出了一种非均匀多任务强化学习方法,通过学习多个强化任务提升效率和泛化性能,将智能体形态构建为图,利用图神经网络能处理任意连接和大小的图来解决... 传统强化学习方法存在效率低下、泛化性能差、策略模型不可迁移的问题。针对此问题,提出了一种非均匀多任务强化学习方法,通过学习多个强化任务提升效率和泛化性能,将智能体形态构建为图,利用图神经网络能处理任意连接和大小的图来解决状态和动作空间维度不同的非均匀任务,突破模型不可迁移的局限,充分发挥图神经网络天然地利用图结构归纳偏差的优点,实现了模型高效训练和泛化性能提升,并可快速迁移到新任务。多任务学习实验结果表明,与以往方法相比,该方法在多任务学习和迁移学习实验中均表现出更好的性能,在迁移学习实验中展现出更准确的知识迁移。通过引入图结构偏差,使该方法具备更高的效率和更好的迁移泛化性能。 展开更多
关键词 多任务强化学习 图神经网络 变分图自编码器 形态信息编码 迁移学习
下载PDF
基于曲率图卷积的非均匀点云掩码自编码器
7
作者 黄敏明 傅仰耿 《福州大学学报(自然科学版)》 CAS 北大核心 2024年第1期1-6,共6页
提出一种基于曲率图卷积的非均匀分组与掩码策略,用以优化掩码自编码器.首先,提出曲率图卷积以避免固定邻域导致的归纳偏差;其次,在曲率图卷积后引入图池化层,根据点云局部特征进行池化操作并分组;最后,在池化层输出特征的基础上学习每... 提出一种基于曲率图卷积的非均匀分组与掩码策略,用以优化掩码自编码器.首先,提出曲率图卷积以避免固定邻域导致的归纳偏差;其次,在曲率图卷积后引入图池化层,根据点云局部特征进行池化操作并分组;最后,在池化层输出特征的基础上学习每个分组的掩码概率来避免冗余.实验结果表明,本方法能有效提高点云掩码自编码器在下游任务的泛化效果,在ModelNet40上的分类精度达到93.7%,在Completion3Dv2上的补全精度达到5.08,均优于目前主流方法. 展开更多
关键词 自编码器 点云 图卷积神经网络 预训练 自监督学习
下载PDF
AGCFN:基于图神经网络多层网络社团检测模型
8
作者 陈龙 张振宇 +1 位作者 李晓明 白宏鹏 《计算机应用研究》 CSCD 北大核心 2024年第10期2926-2931,共6页
基于图神经网络的多层网络社团检测方法面临以下两个挑战。一是如何有效利用多层网络的节点内容信息,二是如何有效利用多层网络的层间关系。因此,提出多层网络社团检测模型AGCFN(autoencoder-enhanced graph convolutional fusion netwo... 基于图神经网络的多层网络社团检测方法面临以下两个挑战。一是如何有效利用多层网络的节点内容信息,二是如何有效利用多层网络的层间关系。因此,提出多层网络社团检测模型AGCFN(autoencoder-enhanced graph convolutional fusion network)。首先通过自编码器独立提取每个网络层的节点内容信息,通过传递算子将提取到的节点内容信息传递给图自编码器进行当前网络层节点内容信息与拓扑结构信息的融合,从而得到当前网络层每个节点的表示,这种方法充分利用了网络的节点内容信息与拓扑结构信息。对于得到的节点表示,通过模块度最大化模块和图解码器对其进行优化。其次,通过多层信息融合模块将每个网络层提取到的节点表示进行融合,得到每个节点的综合表示。最后,通过自训练机制训练模型并得到社团检测结果。与6个模型在三个数据集上进行对比,ACC与NMI评价指标有所提升,验证了AGCFN的有效性。 展开更多
关键词 多层网络 社团检测 图神经网络 自编码器 自监督学习
下载PDF
基于图自编码器和GRU网络的分层交通流预测模型
9
作者 赵子琪 杨斌 张远广 《计算机科学》 CSCD 北大核心 2024年第S01期680-685,共6页
准确的交通流预测信息不仅可以为交通管理人员提供交通决策的坚实基础,还可以减少交通拥堵情况。在交通流预测任务中,获得有效的交通流的时空特性是保证预测效果的前提。现有的方法大多是用未来时刻的数据进行监督学习,提取的特征具有... 准确的交通流预测信息不仅可以为交通管理人员提供交通决策的坚实基础,还可以减少交通拥堵情况。在交通流预测任务中,获得有效的交通流的时空特性是保证预测效果的前提。现有的方法大多是用未来时刻的数据进行监督学习,提取的特征具有局限性。针对现有预测模型无法充分挖掘交通流的时空特性的问题,提出了基于改进的图自编码器和门控循环单元的分层交通预测模型。首先使用图注意力自编码器以无监督的方式深度挖掘交通流的空间特性,然后使用门控循环单元进行时间特征提取。分层结构采用分开训练的方式进行时空依赖关系的学习,旨在获取路网天然存在的空间拓扑特征,使其可以兼容不同时间步下的交通流预测任务。大量实验证明,所提出的GAE-GRU模型在不同数据集下的交通预测任务中取得了优异的表现,MAE,RMSE和MAPE指标均优于基线模型。 展开更多
关键词 交通流预测 图自编码器 门控循环单元 分层 时空依赖
下载PDF
基于图卷积神经网络的单细胞RNA测序数据聚类
10
作者 孔晨曦 鲁大营 《曲阜师范大学学报(自然科学版)》 CAS 2024年第4期83-89,共7页
针对单细胞RNA测序数据的高维性和数据中存在大量丢失噪声的问题,将降噪、降维方法融合到聚类任务中,提出了基于图卷积神经网络的聚类模型——DGGAE.该模型使用零膨胀负二项分布的负对数的似然函数作为降噪自编码器的损失函数处理数据... 针对单细胞RNA测序数据的高维性和数据中存在大量丢失噪声的问题,将降噪、降维方法融合到聚类任务中,提出了基于图卷积神经网络的聚类模型——DGGAE.该模型使用零膨胀负二项分布的负对数的似然函数作为降噪自编码器的损失函数处理数据中的丢失噪声;利用图卷积自编码器获取数据的低维特征;利用KL散度函数作为聚类的损失函数进行深度嵌入聚类.在9个真实的高维度、高噪声的数据集上的实验结果表明,与其它传统聚类方法相比,DGGAE模型有更好的聚类效果. 展开更多
关键词 图卷积神经网络 降维 降噪 聚类 自编码器
下载PDF
改进的掩码图自编码器模型
11
作者 严鑫瑜 庞慧 +2 位作者 石瑞雪 张爱玲 陈威 《河北建筑工程学院学报》 CAS 2024年第1期216-221,共6页
图自编码器(GAE)作为深度学习领域的重要模型之一,近年来受到了广泛关注。但GAE倾向于以牺牲图的结构信息为代价过度强调邻近信息,使其不适用于链接预测之外的下游任务。针对传统GAE存在的问题,研究者们在图自编码器模型中引入掩码策略... 图自编码器(GAE)作为深度学习领域的重要模型之一,近年来受到了广泛关注。但GAE倾向于以牺牲图的结构信息为代价过度强调邻近信息,使其不适用于链接预测之外的下游任务。针对传统GAE存在的问题,研究者们在图自编码器模型中引入掩码策略,形成掩码图自编码器模型处理图数据。基于此,提出改进的掩码图自编码器(MaskGAE)模型,MaskGAE采用掩码图模型(MGM)作为代理任务,掩蔽一部分边,并尝试用部分可见的、未掩蔽的图结构来重建丢失的部分。在Cora数据集上通过调参将MaskGAE模型节点分类准确率提升了0.5%。 展开更多
关键词 编码器 自监督学习 掩码图模型 图结构数据
下载PDF
An attention graph stacked autoencoder for anomaly detection of electro-mechanical actuator using spatio-temporal multivariate signals
12
作者 Jianyu WANG Heng ZHANG Qiang MIAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第9期506-520,共15页
Health monitoring of electro-mechanical actuator(EMA)is critical to ensure the security of airplanes.It is difficult or even impossible to collect enough labeled failure or degradation data from actual EMA.The autoenc... Health monitoring of electro-mechanical actuator(EMA)is critical to ensure the security of airplanes.It is difficult or even impossible to collect enough labeled failure or degradation data from actual EMA.The autoencoder based on reconstruction loss is a popular model that can carry out anomaly detection with only consideration of normal training data,while it fails to capture spatio-temporal information from multivariate time series signals of multiple monitoring sensors.To mine the spatio-temporal information from multivariate time series signals,this paper proposes an attention graph stacked autoencoder for EMA anomaly detection.Firstly,attention graph con-volution is introduced into autoencoder to convolve temporal information from neighbor features to current features based on different weight attentions.Secondly,stacked autoencoder is applied to mine spatial information from those new aggregated temporal features.Finally,based on the bench-mark reconstruction loss of normal training data,different health thresholds calculated by several statistic indicators can carry out anomaly detection for new testing data.In comparison with tra-ditional stacked autoencoder,the proposed model could obtain higher fault detection rate and lower false alarm rate in EMA anomaly detection experiment. 展开更多
关键词 Anomaly detection Spatio-temporal informa-tion Multivariate time series signals Attention graph convolution Stacked autoencoder
原文传递
乳腺癌空间转录组数据集上基于深度学习的EnST算法研究
13
作者 赵雅楠 尹娜 +2 位作者 司志好 尚文婧 冯振兴 《内蒙古工业大学学报(自然科学版)》 2024年第3期200-205,共6页
在保留空间位置和组织学图像的基础上,空间转录组学使用基因表达谱数据对组织结构和生物发育提出新的见解。准确识别位点的空间域是空间转录组学各种下游分析的重要步骤,提出的EnST算法在运用复合缩放网络的基础上,添加了变分图自编码器... 在保留空间位置和组织学图像的基础上,空间转录组学使用基因表达谱数据对组织结构和生物发育提出新的见解。准确识别位点的空间域是空间转录组学各种下游分析的重要步骤,提出的EnST算法在运用复合缩放网络的基础上,添加了变分图自编码器,能够在空间转录组数据中提取有用信息。在人类乳腺癌空间转录组学数据集中,相比于其他算法,EnST算法可以更好地描绘乳腺癌精细的空间组织结构。此外,EnST学习到的表征在聚类、可视化、差异基因表达分析、GO功能分析等下游任务中也展现出强大的性能。 展开更多
关键词 深度学习 变分图自编码器 乳腺癌 空间域 聚类
下载PDF
GAE在列车牵引系统早期故障检测中的应用
14
作者 程超 鞠云飞 +3 位作者 刘明 陈宏田 韩玲 文韬 《中国安全科学学报》 CAS CSCD 北大核心 2022年第6期73-78,共6页
为解决高速列车牵引系统的早期故障检测问题,首先,利用广义自编码器(GAE)处理系统采集的数据;然后,借助携带故障信息的残差生成器来检验统计量,有效增强早期故障检测能力;最后,在高速列车牵引控制仿真平台上,分别针对气隙偏心、转子断... 为解决高速列车牵引系统的早期故障检测问题,首先,利用广义自编码器(GAE)处理系统采集的数据;然后,借助携带故障信息的残差生成器来检验统计量,有效增强早期故障检测能力;最后,在高速列车牵引控制仿真平台上,分别针对气隙偏心、转子断条、链路和轴承4种故障进行试验研究,验证其在线应用的有效性。结果表明:GAE的残差生成器具有较强的适用性和灵敏度,能够适应牵引系统的非线性特征,故障检测无误报,漏报概率低于6%。 展开更多
关键词 广义自编码器(gae) 高速列车 牵引系统 早期故障检测 神经网络
下载PDF
基于增强多通道图注意力的推荐模型
15
作者 张昱 苏仡琳 +2 位作者 李继涛 陈广书 张明魁 《河北大学学报(自然科学版)》 CAS 北大核心 2024年第2期190-198,共9页
图神经网络具备融合节点信息与拓扑结构的能力,近年来在推荐算法中得到了广泛的应用.然而,现有的基于图神经网络的推荐模型用户行为建模粒度较粗,用户特征学习算法对历史信息使用不足,两者阻碍了用户偏好特征的提取.针对以上问题,本文... 图神经网络具备融合节点信息与拓扑结构的能力,近年来在推荐算法中得到了广泛的应用.然而,现有的基于图神经网络的推荐模型用户行为建模粒度较粗,用户特征学习算法对历史信息使用不足,两者阻碍了用户偏好特征的提取.针对以上问题,本文提出一种基于增强多通道图注意力的推荐模型(enhanced multi-channel graph attention based collaborative filtering recommendation model, EMGACF).在邻域聚合部分,采用多通道图注意力对细粒度用户评分等级建模,有效提升了模型对用户偏好的学习能力;在节点更新部分,提出基于增强自信息的节点更新算法,使用邻居节点聚合表示的同时保留了节点自身历史信息和内在偏好,提升了迭代过程中用户偏好的学习效果.实验部分在4种规模的常用推荐系统基准数据集上训练模型,实验结果表明,预测误差相比于主流模型降低了1.43%~7.81%. 展开更多
关键词 图注意力 用户偏好 自编码器 协同过滤
下载PDF
图神经网络的类别解耦小样本分类
16
作者 邓戈龙 黄国恒 陈紫嫣 《计算机工程与应用》 CSCD 北大核心 2024年第2期129-136,共8页
现有的基于度量的小样本图像分类模型展现了一定的小样本学习性能,然而这些模型往往忽略了原始数据被分类关键特征的提取。图像数据中与分类无关的冗余信息被融入小样本模型的网络参数中,容易造成基于度量方法的小样本图像分类性能瓶颈... 现有的基于度量的小样本图像分类模型展现了一定的小样本学习性能,然而这些模型往往忽略了原始数据被分类关键特征的提取。图像数据中与分类无关的冗余信息被融入小样本模型的网络参数中,容易造成基于度量方法的小样本图像分类性能瓶颈。针对这个问题,提出一种基于图神经网络的类别解耦小样本图像分类模型(VT-GNN),该模型结合图像自注意力与分类任务监督的变分自编码器作为图像嵌入模块,得到原始图像类别解耦特征信息,成为图结构中的一个图节点。通过一个多层感知机为节点之间构建具有度量信息的边特征,将一组小样本训练数据构造为图结构数据,借助图神经网络的消息传递机制实现小样本学习。在公开数据集Mini-Imagenet上,VT-GNN在分别5-way1-shot与5-way 5-shot设置中相较于基线图神经网络模型分别获得了17.9个百分点和16.25个百分点的性能提升。 展开更多
关键词 小样本学习 图神经网络 变分自编码器 图像自注意力
下载PDF
基于图自编码器与LightGBM的癌症驱动基因识别系统
17
作者 谢兵 苏波 《计算机系统应用》 2024年第10期87-96,共10页
在癌症的形成和进展中,癌症驱动基因扮演着重要角色.准确识别癌症驱动基因有助于深入理解癌症的发生机制,推动精准医学的发展.针对当前癌症驱动基因识别领域所面临的异质性和复杂性问题,本文设计并实现了一种基于图自编码器与LightGBM... 在癌症的形成和进展中,癌症驱动基因扮演着重要角色.准确识别癌症驱动基因有助于深入理解癌症的发生机制,推动精准医学的发展.针对当前癌症驱动基因识别领域所面临的异质性和复杂性问题,本文设计并实现了一种基于图自编码器与LightGBM的癌症驱动基因识别系统ACGAI.该系统首先以无监督的方式通过图自编码器学习生物分子网络的复杂拓扑结构,随后将生成的嵌入表示与原始基因特征进行拼接,形成基因增强特征并输入至LightGBM.在经过训练后,系统输出生物分子网络上每个基因的预测得分,实现了对癌症驱动基因的准确识别.最终,该系统利用Web技术创建了一套用户友好、交互性强的可视化界面,实现在基因集分析场景中的癌症驱动基因识别,并为识别结果提供了生物学解释.经过测试,该系统表现出优于其他方法的识别性能,能有效识别癌症驱动基因. 展开更多
关键词 图自编码器 LightGBM 深度学习 癌症驱动基因识别 精准医疗
下载PDF
基于图偏差网络的外部自编码器时间序列异常检测
18
作者 张孚容 顾磊 《计算机系统应用》 2024年第3期24-33,共10页
随着互联网和连接技术的提高,传感器产生的数据逐渐趋于复杂化.深度学习方法在处理高维数据的异常检测方面取得较好的进展,图偏差网络(graph deviation network,GDN)学习传感器节点之间关系来预测异常,并取得一定的效果.针对图偏差网络... 随着互联网和连接技术的提高,传感器产生的数据逐渐趋于复杂化.深度学习方法在处理高维数据的异常检测方面取得较好的进展,图偏差网络(graph deviation network,GDN)学习传感器节点之间关系来预测异常,并取得一定的效果.针对图偏差网络模型缺少对时间依赖性以及异常数据不稳定的处理,提出了基于图偏差网络的外部自编码器模型(graph deviation network-based external attention autoencoder,AEEA-GDN)深度提取表征,此外在模型训练时引入自适应学习机制,帮助网络更好地适应异常数据的变化.在3个现实收集传感器数据集上的实验结果表明,基于图偏差网络的外部自编码器模型比基线方法更准确地检测异常,且总体性能更优. 展开更多
关键词 异常检测 图偏差网络 自编码器 外部注意力机制 自适应学习
下载PDF
面向癌症亚型预测的多组学AI模型
19
作者 曹云芳 李东喜 《计算机工程与设计》 北大核心 2024年第8期2454-2460,共7页
针对癌症亚型预测中仅使用单组学数据信息有限的问题,提出一种基于稀疏自编码器和相似网络融合的多组学癌症分型预测模型(multi-omics sparse auto-encoder, MOSAE)。利用稀疏自编码器提取患者特征向量,应用相似网络融合方法构建患者的... 针对癌症亚型预测中仅使用单组学数据信息有限的问题,提出一种基于稀疏自编码器和相似网络融合的多组学癌症分型预测模型(multi-omics sparse auto-encoder, MOSAE)。利用稀疏自编码器提取患者特征向量,应用相似网络融合方法构建患者的相似度网络。基于患者特征向量和患者相似度网络利用残差图卷积网络构建预测模型。实验结果表明,在乳腺癌和卵巢癌数据上,所提模型识别亚型的准确率比现有方法分别提高了2.74%和19.74%。在TCGA的肺鳞状细胞癌和头颈部癌症数据上验证了MOSAE模型的优越性。 展开更多
关键词 稀疏自编码器 残差图卷积网络 相似网络融合 多组学数据 癌症亚型 多模态 特征提取
下载PDF
基于图持续学习的时序数据分析
20
作者 董次浩 陈雷鸣 +3 位作者 黄子凌 朱宜昌 仇家康 刘尚儒 《计算机系统应用》 2024年第2期188-197,共10页
随着可穿戴设备大规模进入生活,基于动作传感器产生的时序数据来人体行为识别已成为该领域的研究热点.然而目前的方法无法发现多个传感器数据在时空中相互作用的关系.此外,传统神经网络在学习新任务时,由于学习的新任务参数会覆盖掉旧... 随着可穿戴设备大规模进入生活,基于动作传感器产生的时序数据来人体行为识别已成为该领域的研究热点.然而目前的方法无法发现多个传感器数据在时空中相互作用的关系.此外,传统神经网络在学习新任务时,由于学习的新任务参数会覆盖掉旧任务参数,这会引起“灾难性遗忘”问题.为解决这两个问题,本文提出了一种基于图注意力网络与生成式回放持续学习机制融合方法的人体行为识别算法.该算法通过卷积神经网络与图注意力网络提取时序特征,使得模型能够同时关注时间与空间特征,同时,采用了基于生成式数据重放策略的情景记忆持续学习方法,通过条件变分自编码器记忆历史数据分布来解决灾难性遗忘问题.最后,通过在多个公开数据集上与不同的基线算法对比,实验结果表明本文所提算法可以在取得较高的准确率的同时,缓解灾难性遗忘问题. 展开更多
关键词 图注意力网络 可穿戴设备 运动检测 持续学习 条件变分自编码器
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部