A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inne...A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inner-level Bregmanized method devotes to dictionary updating and sparse represention of small overlapping image patches. The introduced constraint of graph regularized sparse coding can capture local image features effectively, and consequently enables accurate reconstruction from highly undersampled partial data. Furthermore, modified sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge within a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can effectively reconstruct images and it outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.展开更多
For quantum sparse graph codes with stabilizer formalism, the unavoidable girth-four cycles in their Tanner graphs greatly degrade the iterative decoding performance with standard belief-propagation (BP) algorithm. ...For quantum sparse graph codes with stabilizer formalism, the unavoidable girth-four cycles in their Tanner graphs greatly degrade the iterative decoding performance with standard belief-propagation (BP) algorithm. In this paper, we present a jointly-check iterative algorithm suitable for decoding quantum sparse graph codes efficiently. Numerical simulations show that this modified method outperforms standard BP algorithm with an obvious performance improvement.展开更多
The imaging speed is a bottleneck for magnetic resonance imaging( MRI) since it appears. To alleviate this difficulty,a novel graph regularized sparse coding method for highly undersampled MRI reconstruction( GSCMRI) ...The imaging speed is a bottleneck for magnetic resonance imaging( MRI) since it appears. To alleviate this difficulty,a novel graph regularized sparse coding method for highly undersampled MRI reconstruction( GSCMRI) was proposed. The graph regularized sparse coding showed the potential in maintaining the geometrical information of the data. In this study, it was incorporated with two-level Bregman iterative procedure that updated the data term in outer-level and learned dictionary in innerlevel. Moreover,the graph regularized sparse coding and simple dictionary updating stages derived by the inner minimization made the proposed algorithm converge in few iterations, meanwhile achieving superior reconstruction performance. Extensive experimental results have demonstrated GSCMRI can consistently recover both real-valued MR images and complex-valued MR data efficiently,and outperform the current state-of-the-art approaches in terms of higher PSNR and lower HFEN values.展开更多
In this paper, a two-level Bregman method is presented with graph regularized sparse coding for highly undersampled magnetic resonance image reconstruction. The graph regularized sparse coding is incorporated with the...In this paper, a two-level Bregman method is presented with graph regularized sparse coding for highly undersampled magnetic resonance image reconstruction. The graph regularized sparse coding is incorporated with the two-level Bregman iterative procedure which enforces the sampled data constraints in the outer level and updates dictionary and sparse representation in the inner level. Graph regularized sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge with a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can consistently reconstruct both simulated MR images and real MR data efficiently, and outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.展开更多
The detection of software vulnerabilities written in C and C++languages takes a lot of attention and interest today.This paper proposes a new framework called DrCSE to improve software vulnerability detection.It uses ...The detection of software vulnerabilities written in C and C++languages takes a lot of attention and interest today.This paper proposes a new framework called DrCSE to improve software vulnerability detection.It uses an intelligent computation technique based on the combination of two methods:Rebalancing data and representation learning to analyze and evaluate the code property graph(CPG)of the source code for detecting abnormal behavior of software vulnerabilities.To do that,DrCSE performs a combination of 3 main processing techniques:(i)building the source code feature profiles,(ii)rebalancing data,and(iii)contrastive learning.In which,the method(i)extracts the source code’s features based on the vertices and edges of the CPG.The method of rebalancing data has the function of supporting the training process by balancing the experimental dataset.Finally,contrastive learning techniques learn the important features of the source code by finding and pulling similar ones together while pushing the outliers away.The experiment part of this paper demonstrates the superiority of the DrCSE Framework for detecting source code security vulnerabilities using the Verum dataset.As a result,the method proposed in the article has brought a pretty good performance in all metrics,especially the Precision and Recall scores of 39.35%and 69.07%,respectively,proving the efficiency of the DrCSE Framework.It performs better than other approaches,with a 5%boost in Precision and a 5%boost in Recall.Overall,this is considered the best research result for the software vulnerability detection problem using the Verum dataset according to our survey to date.展开更多
This paper deals with dynamic airspace sectorization (DAS) problem by an improved genetic algorithm (iGA). A graph model is first constructed that represents the airspace static structure. Then the DAS problem is ...This paper deals with dynamic airspace sectorization (DAS) problem by an improved genetic algorithm (iGA). A graph model is first constructed that represents the airspace static structure. Then the DAS problem is formulated as a graph-partitioning problem to balance the sector workload under the premise of ensuring safety. In the iGA, multiple populations and hybrid coding are applied to determine the optimal sector number and airspace sectorization. The sector constraints are well satisfied by the improved genetic operators and protect zones. This method is validated by being applied to the airspace of North China in terms of three indexes, which are sector balancing index, coordination workload index and sector average flight time index. The improvement is obvious, as the sector balancing index is reduced by 16.5 %, the coordination workload index is reduced by 11.2 %, and the sector average flight time index is increased by 11.4 % during the peak-hour traffic.展开更多
In this paper, we focus on shortblock nonbinary LDPC(NB-LDPC) codes based on cyclic codes. Based on Tanner graphs' isomorphism, we present an efficient search algorithm for finding non-isomorphic binary cyclic LDP...In this paper, we focus on shortblock nonbinary LDPC(NB-LDPC) codes based on cyclic codes. Based on Tanner graphs' isomorphism, we present an efficient search algorithm for finding non-isomorphic binary cyclic LDPC codes. Notice that the parity-check matrix H of the resulting code is square and not of full rank, and its row weight and column weight are the same. By replacing the ones in the same column of H with a nonzero element of fi nite fi elds GF(q), a class of NB-LDPC codes over GF(q) is obtained. Numerical results show that the constructed codes perform well over the AWGN channel and have fast decoding convergence. Therefore, the proposed NB-LDPC codes provide a promising coding scheme for low-latency and high-reliability communications.展开更多
A code is said to be a w-identifiable parent property code (or w-IPP code for short) if whenever d is a descendant of w (or fewer) codewords, and one can always identify at least one of the parents of d. Let C be an (...A code is said to be a w-identifiable parent property code (or w-IPP code for short) if whenever d is a descendant of w (or fewer) codewords, and one can always identify at least one of the parents of d. Let C be an (N,w + 1,q)-code and C* an (w + 1)-color graph for C. If a graph G is a subgraph of C* and consists of w +1 edges with different colors, then G is called a (w +1)-pattern of C*. In this paper, we proved that C is a w-IPP code if and only if there exists at most one vertex with color degree more than 1 in any (w + 1)-pattern of C*.展开更多
基金The National Natural Science Foundation of China (No.61362001,61102043,61262084,20132BAB211030,20122BAB211015)the Basic Research Program of Shenzhen(No.JC201104220219A)
文摘A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inner-level Bregmanized method devotes to dictionary updating and sparse represention of small overlapping image patches. The introduced constraint of graph regularized sparse coding can capture local image features effectively, and consequently enables accurate reconstruction from highly undersampled partial data. Furthermore, modified sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge within a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can effectively reconstruct images and it outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.
基金Project supported by the National Natural Science Foundation of China(Grant No.60972046)Grant from the National Defense Pre-Research Foundation of China
文摘For quantum sparse graph codes with stabilizer formalism, the unavoidable girth-four cycles in their Tanner graphs greatly degrade the iterative decoding performance with standard belief-propagation (BP) algorithm. In this paper, we present a jointly-check iterative algorithm suitable for decoding quantum sparse graph codes efficiently. Numerical simulations show that this modified method outperforms standard BP algorithm with an obvious performance improvement.
基金National Natural Science Foundations of China(Nos.61362001,61102043,61262084)Technology Foundations of Department of Education of Jiangxi Province,China(Nos.GJJ12006,GJJ14196)Natural Science Foundations of Jiangxi Province,China(Nos.20132BAB211030,20122BAB211015)
文摘The imaging speed is a bottleneck for magnetic resonance imaging( MRI) since it appears. To alleviate this difficulty,a novel graph regularized sparse coding method for highly undersampled MRI reconstruction( GSCMRI) was proposed. The graph regularized sparse coding showed the potential in maintaining the geometrical information of the data. In this study, it was incorporated with two-level Bregman iterative procedure that updated the data term in outer-level and learned dictionary in innerlevel. Moreover,the graph regularized sparse coding and simple dictionary updating stages derived by the inner minimization made the proposed algorithm converge in few iterations, meanwhile achieving superior reconstruction performance. Extensive experimental results have demonstrated GSCMRI can consistently recover both real-valued MR images and complex-valued MR data efficiently,and outperform the current state-of-the-art approaches in terms of higher PSNR and lower HFEN values.
基金Supported by the National Natural Science Foundation of China(No.61261010No.61362001+7 种基金No.61365013No.61262084No.51165033)Technology Foundation of Department of Education in Jiangxi Province(GJJ13061GJJ14196)Young Scientists Training Plan of Jiangxi Province(No.20133ACB21007No.20142BCB23001)National Post-Doctoral Research Fund(No.2014M551867)and Jiangxi Advanced Project for Post-Doctoral Research Fund(No.2014KY02)
文摘In this paper, a two-level Bregman method is presented with graph regularized sparse coding for highly undersampled magnetic resonance image reconstruction. The graph regularized sparse coding is incorporated with the two-level Bregman iterative procedure which enforces the sampled data constraints in the outer level and updates dictionary and sparse representation in the inner level. Graph regularized sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge with a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can consistently reconstruct both simulated MR images and real MR data efficiently, and outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.
文摘The detection of software vulnerabilities written in C and C++languages takes a lot of attention and interest today.This paper proposes a new framework called DrCSE to improve software vulnerability detection.It uses an intelligent computation technique based on the combination of two methods:Rebalancing data and representation learning to analyze and evaluate the code property graph(CPG)of the source code for detecting abnormal behavior of software vulnerabilities.To do that,DrCSE performs a combination of 3 main processing techniques:(i)building the source code feature profiles,(ii)rebalancing data,and(iii)contrastive learning.In which,the method(i)extracts the source code’s features based on the vertices and edges of the CPG.The method of rebalancing data has the function of supporting the training process by balancing the experimental dataset.Finally,contrastive learning techniques learn the important features of the source code by finding and pulling similar ones together while pushing the outliers away.The experiment part of this paper demonstrates the superiority of the DrCSE Framework for detecting source code security vulnerabilities using the Verum dataset.As a result,the method proposed in the article has brought a pretty good performance in all metrics,especially the Precision and Recall scores of 39.35%and 69.07%,respectively,proving the efficiency of the DrCSE Framework.It performs better than other approaches,with a 5%boost in Precision and a 5%boost in Recall.Overall,this is considered the best research result for the software vulnerability detection problem using the Verum dataset according to our survey to date.
基金funded by the Joint Funds of the National Natural Science Foundation of China (61079001)
文摘This paper deals with dynamic airspace sectorization (DAS) problem by an improved genetic algorithm (iGA). A graph model is first constructed that represents the airspace static structure. Then the DAS problem is formulated as a graph-partitioning problem to balance the sector workload under the premise of ensuring safety. In the iGA, multiple populations and hybrid coding are applied to determine the optimal sector number and airspace sectorization. The sector constraints are well satisfied by the improved genetic operators and protect zones. This method is validated by being applied to the airspace of North China in terms of three indexes, which are sector balancing index, coordination workload index and sector average flight time index. The improvement is obvious, as the sector balancing index is reduced by 16.5 %, the coordination workload index is reduced by 11.2 %, and the sector average flight time index is increased by 11.4 % during the peak-hour traffic.
基金supported in part by National Natural Science Foundation of China under Grants 61372074,91438101,61103143,U1504601,and U1404622Key Scientific and Technological Project of Henan under Grants 162102310589 and 172102310124
文摘In this paper, we focus on shortblock nonbinary LDPC(NB-LDPC) codes based on cyclic codes. Based on Tanner graphs' isomorphism, we present an efficient search algorithm for finding non-isomorphic binary cyclic LDPC codes. Notice that the parity-check matrix H of the resulting code is square and not of full rank, and its row weight and column weight are the same. By replacing the ones in the same column of H with a nonzero element of fi nite fi elds GF(q), a class of NB-LDPC codes over GF(q) is obtained. Numerical results show that the constructed codes perform well over the AWGN channel and have fast decoding convergence. Therefore, the proposed NB-LDPC codes provide a promising coding scheme for low-latency and high-reliability communications.
基金the National Natural Science Foundation of China (No. 10471093)
文摘A code is said to be a w-identifiable parent property code (or w-IPP code for short) if whenever d is a descendant of w (or fewer) codewords, and one can always identify at least one of the parents of d. Let C be an (N,w + 1,q)-code and C* an (w + 1)-color graph for C. If a graph G is a subgraph of C* and consists of w +1 edges with different colors, then G is called a (w +1)-pattern of C*. In this paper, we proved that C is a w-IPP code if and only if there exists at most one vertex with color degree more than 1 in any (w + 1)-pattern of C*.