期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
User Churn Prediction Hierarchical Model Based on Graph Attention Convolutional Neural Networks
1
作者 Mei Miao Tang Miao Zhou Long 《China Communications》 SCIE CSCD 2024年第7期169-185,共17页
The telecommunications industry is becoming increasingly aware of potential subscriber churn as a result of the growing popularity of smartphones in the mobile Internet era,the quick development of telecommunications ... The telecommunications industry is becoming increasingly aware of potential subscriber churn as a result of the growing popularity of smartphones in the mobile Internet era,the quick development of telecommunications services,the implementation of the number portability policy,and the intensifying competition among operators.At the same time,users'consumption preferences and choices are evolving.Excellent churn prediction models must be created in order to accurately predict the churn tendency,since keeping existing customers is far less expensive than acquiring new ones.But conventional or learning-based algorithms can only go so far into a single subscriber's data;they cannot take into consideration changes in a subscriber's subscription and ignore the coupling and correlation between various features.Additionally,the current churn prediction models have a high computational burden,a fuzzy weight distribution,and significant resource economic costs.The prediction algorithms involving network models currently in use primarily take into account the private information shared between users with text and pictures,ignoring the reference value supplied by other users with the same package.This work suggests a user churn prediction model based on Graph Attention Convolutional Neural Network(GAT-CNN)to address the aforementioned issues.The main contributions of this paper are as follows:Firstly,we present a three-tiered hierarchical cloud-edge cooperative framework that increases the volume of user feature input by means of two aggregations at the device,edge,and cloud layers.Second,we extend the use of users'own data by introducing self-attention and graph convolution models to track the relative changes of both users and packages simultaneously.Lastly,we build an integrated offline-online system for churn prediction based on the strengths of the two models,and we experimentally validate the efficacy of cloudside collaborative training and inference.In summary,the churn prediction model based on Graph Attention Convolutional Neural Network presented in this paper can effectively address the drawbacks of conventional algorithms and offer telecom operators crucial decision support in developing subscriber retention strategies and cutting operational expenses. 展开更多
关键词 cloud-edge cooperative framework GAT-CNN self-attention and graph convolution models subscriber churn prediction
下载PDF
Weighted Forwarding in Graph Convolution Networks for Recommendation Information Systems
2
作者 Sang-min Lee Namgi Kim 《Computers, Materials & Continua》 SCIE EI 2024年第2期1897-1914,共18页
Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been ... Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been employed to implement the RIS efficiently.However,the GCN algorithm faces limitations in terms of performance enhancement owing to the due to the embedding value-vanishing problem that occurs during the learning process.To address this issue,we propose a Weighted Forwarding method using the GCN(WF-GCN)algorithm.The proposed method involves multiplying the embedding results with different weights for each hop layer during graph learning.By applying the WF-GCN algorithm,which adjusts weights for each hop layer before forwarding to the next,nodes with many neighbors achieve higher embedding values.This approach facilitates the learning of more hop layers within the GCN framework.The efficacy of the WF-GCN was demonstrated through its application to various datasets.In the MovieLens dataset,the implementation of WF-GCN in LightGCN resulted in significant performance improvements,with recall and NDCG increasing by up to+163.64%and+132.04%,respectively.Similarly,in the Last.FM dataset,LightGCN using WF-GCN enhanced with WF-GCN showed substantial improvements,with the recall and NDCG metrics rising by up to+174.40%and+169.95%,respectively.Furthermore,the application of WF-GCN to Self-supervised Graph Learning(SGL)and Simple Graph Contrastive Learning(SimGCL)also demonstrated notable enhancements in both recall and NDCG across these datasets. 展开更多
关键词 Deep learning graph neural network graph convolution network graph convolution network model learning method recommender information systems
下载PDF
Adaptively temporal graph convolution model for epidemic prediction of multiple age groups
3
作者 Yuejiao Wang Dajun Daniel Zeng +5 位作者 Qingpeng Zhang Pengfei Zhao Xiaoli Wang Quanyi Wang Yin Luo Zhidong Cao 《Fundamental Research》 CAS 2022年第2期311-320,共10页
Introduction:Multivariate time series prediction of infectious diseases is significant to public health,and the deep learning method has attracted increasing attention in this research field.Material and methods:An ad... Introduction:Multivariate time series prediction of infectious diseases is significant to public health,and the deep learning method has attracted increasing attention in this research field.Material and methods:An adaptively temporal graph convolution(ATGCN)model,which leams the contact patterns of multiple age groups in a graph-based approach,was proposed for COVID-19 and influenza prediction.We compared ATGCN with autoregressive models,deep sequence learning models,and experience-based ATGCN models in short-term and long-term prediction tasks.Results:Results showed that the ATGCN model performed better than the autoregressive models and the deep sequence learning models on two datasets in both short-term(12.5%and 10%improvements on RMSE)and longterm(12.4%and 5%improvements on RMSE)prediction tasks.And the RMSE of ATGCN predictions fluctuated least in different age groups of COVID-19(0.029±0.003)and influenza(0.059±0.008).Compared with the Ones-ATGCN model or the Pre-ATGCN model,the ATGCN model was more robust in performance,with RMSE of 0.0293 and 0.06 on two datasets when horizon is one.Discussion:Our research indicates a broad application prospect of deep learning in the field of infectious disease prediction.Transmission characteristics and domain knowledge of infectious diseases should be further applied to the design of deep learning models and feature selection.Conclusion:The ATGCN model addressed the multivariate time series forecasting in a graph-based deep learning approach and achieved robust prediction on the confirmed cases of multiple age groups,indicating its great potentials for exploring the implicit interactions of multivariate variables. 展开更多
关键词 graph convolution model Infectious disease prediction Multiple age group Multivariate time series Public health
原文传递
Item Recommendation Based on Monotonous Behavior Chains
4
作者 Tiepai Yang 《国际计算机前沿大会会议论文集》 2021年第1期17-31,共15页
In the field of e-commerce,recommendation systems can accurately provide users with products and services of potential interest,thereby enhancing users’online shopping experience.“Explicit”feedback and“implicit”f... In the field of e-commerce,recommendation systems can accurately provide users with products and services of potential interest,thereby enhancing users’online shopping experience.“Explicit”feedback and“implicit”feedback are mostly studied in two relatively independent research fields.In the actual interaction process between users and commodities,there is a kind of signal between the two Monotonic dependence,that is,sparse and reliable explicit signals must imply dense and noisy implicit signals.In this paper,a special“monotonic behavior chain”structure is proposed to constrain the two signals,and a series of usercommodity interaction behaviors is mapped into a user-commodity multi-stage binary interaction diagram.The two feedback signals were combined and the complete interaction was simulated between the user and the product.Then a depth model framework GAERE was proposed based on the graph auto-encoder,which converts the matrix completion problem of the traditional recommendation system into the problem of graph link prediction.Four realistic data sets were applied to evaluate the effectiveness of the proposed method.The model shows competitiveness on standard collaborative filtering benchmarks.In addition,the application of graph convolutional network was further explored to process graph structure data in recommendation system from the perspective of user behavior intention. 展开更多
关键词 Recommendation system graph convolution model Matrix completion
原文传递
Maximizing the mechanical performance of Ti_(3)AlC_(2)-based MAX phases with aid of machine learning 被引量:4
5
作者 Xingjun DUAN Zhi FANG +5 位作者 Tao YANG Chunyu GUO Zhongkang HAN Debalaya SARKER Xinmei HOU Enhui WANG 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第8期1307-1318,共12页
Mechanical properties consisting of the bulk modulus,shear modulus,Young’s modulus,Poisson’s ratio,etc.,are key factors in determining the practical applications of MAX phases.These mechanical properties are mainly ... Mechanical properties consisting of the bulk modulus,shear modulus,Young’s modulus,Poisson’s ratio,etc.,are key factors in determining the practical applications of MAX phases.These mechanical properties are mainly dependent on the strength of M–X and M–A bonds.In this study,a novel strategy based on the crystal graph convolution neural network(CGCNN)model has been successfully employed to tune these mechanical properties of Ti_(3)AlC_(2)-based MAX phases via the A-site substitution(Ti_(3)(Al1-xAx)C_(2)).The structure–property correlation between the A-site substitution and mechanical properties of Ti_(3)(Al1-xAx)C_(2)is established.The results show that the thermodynamic stability of Ti_(3)(Al1-xAx)C_(2)is enhanced with substitutions A=Ga,Si,Sn,Ge,Te,As,or Sb.The stiffness of Ti_(3)AlC_(2)increases with the substitution concentration of Si or As increasing,and the higher thermal shock resistance is closely associated with the substitution of Sn or Te.In addition,the plasticity of Ti_(3)AlC_(2)can be greatly improved when As,Sn,or Ge is used as a substitution.The findings and understandings demonstrated herein can provide universal guidance for the individual synthesis of high-performance MAX phases for various applications. 展开更多
关键词 Ti_(3)(Al1−xAx)C_(2) crystal graph convolution neural network(CGCNN)model stability mechanical properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部