The construction of new power systems presents higher requirements for the Power Internet of Things(PIoT)technology.The“source-grid-load-storage”architecture of a new power system requires PIoT to have a stronger mu...The construction of new power systems presents higher requirements for the Power Internet of Things(PIoT)technology.The“source-grid-load-storage”architecture of a new power system requires PIoT to have a stronger multi-source heterogeneous data fusion ability.Native graph databases have great advantages in dealing with multi-source heterogeneous data,which make them suitable for an increasing number of analytical computing tasks.However,only few existing graph database products have native support for matrix operation-related interfaces or functions,resulting in low efficiency when handling matrix calculations that are commonly encountered in power grids.In this paper,the matrix computation process is expressed by a strategy called graph description,which relies on the natural connection between the matrix and structure of the graph.Based on that,we implement matrix operations on graph database,including matrix multiplication,matrix decomposition,etc.Specifically,only the nodes relevant to the computation and their neighbors are concerned in the process,which prunes the influence of zero elements in the matrix and avoids useless iterations compared to the conventional matrix computation.Based on the graph description,a series of power grid computations can be implemented on graph database,which reduces redundant data import and export operations while leveraging the parallel computing capability of graph database.It promotes the efficiency of PIoT when handling multi-source heterogeneous data.An comprehensive experimental study over two different scale power system datasets compares the proposed method with Python and MATLAB baselines.The results reveal the superior performance of our proposed method in both power flow and N-1 contingency computations.展开更多
The query optimizer uses cost-based optimization to create an execution plan with the least cost,which also consumes the least amount of resources.The challenge of query optimization for relational database systems is...The query optimizer uses cost-based optimization to create an execution plan with the least cost,which also consumes the least amount of resources.The challenge of query optimization for relational database systems is a combinatorial optimization problem,which renders exhaustive search impossible as query sizes rise.Increases in CPU performance have surpassed main memory,and disk access speeds in recent decades,allowing data compression to be used—strategies for improving database performance systems.For performance enhancement,compression and query optimization are the two most factors.Compression reduces the volume of data,whereas query optimization minimizes execution time.Compressing the database reduces memory requirement,data takes less time to load into memory,fewer buffer missing occur,and the size of intermediate results is more diminutive.This paper performed query optimization on the graph database in a cloud dew environment by considering,which requires less time to execute a query.The factors compression and query optimization improve the performance of the databases.This research compares the performance of MySQL and Neo4j databases in terms of memory usage and execution time running on cloud dew servers.展开更多
In this paper, we approach the design of ID caching technology(IDCT) for graph databases, with the purpose of accelerating the queries on graph database data and avoiding redundant graph database query operations whic...In this paper, we approach the design of ID caching technology(IDCT) for graph databases, with the purpose of accelerating the queries on graph database data and avoiding redundant graph database query operations which will consume great computer resources. Traditional graph database caching technology(GDCT)needs a large memory to store data and has the problems of serious data consistency and low cache utilization. To address these issues, in the paper we propose a new technology which focuses on ID allocation mechanism and high-speed queries of ID on graph databases. Specifically, ID of the query result is cached in memory and data consistency is achieved through the real-time synchronization and cache memory adaptation. In addition, we set up complex queries and simple queries to satisfy all query requirements and design a mechanism of cache replacement based on query action time, query times, and memory capacity, thus improving the performance furthermore.Extensive experiments show the superiority of our techniques compared with the traditional query approach of graph databases.展开更多
With the globalization of NBA, all eyes on the NBA playoffs are around the world. Ones celebrate the winning of their team which they like. Especially, NBA fans keep on predicting the playoffs game results. However, p...With the globalization of NBA, all eyes on the NBA playoffs are around the world. Ones celebrate the winning of their team which they like. Especially, NBA fans keep on predicting the playoffs game results. However, prediction of winning probability of teams in NBA playoffs is challenging. In order to meet the challenges, we proposed a method using ELO algorithm for prediction and leveraging Graph Database, Neo4j, for implementation. Experiment results show that, the design and implementation of the prediction system could work to some degree.展开更多
In this systems paper,we present MillenniumDB:a novel graph database engine that is modular,persistent,and open source.MillenniumDB is based on a graph data model,which we call domain graphs,that provides a simple abs...In this systems paper,we present MillenniumDB:a novel graph database engine that is modular,persistent,and open source.MillenniumDB is based on a graph data model,which we call domain graphs,that provides a simple abstraction upon which a variety of popular graph models can be supported,thus providing a flexible data management engine for diverse types of knowledge graph.The engine itself is founded on a combination of tried and tested techniques from relational data management,state-of-the-art algorithms for worst-case-optimal joins,as well as graph-specific algorithms for evaluating path queries.In this paper,we present the main design principles underlying MillenniumDB,describing the abstract graph model and query semantics supported,the concrete data model and query syntax implemented,as well as the storage,indexing,query planning and query evaluation techniques used.We evaluate MillenniumDB over real-world data and queries from the Wikidata knowledge graph,where we find that it outperforms other popular persistent graph database engines(including both enterprise and open source alternatives)that support similarqueryfeatures.展开更多
The power communication network can be abstracted as a graph based on its topology. In this paper, we propose an approach to conduct simulations of power communication network based on its graph representation. In par...The power communication network can be abstracted as a graph based on its topology. In this paper, we propose an approach to conduct simulations of power communication network based on its graph representation. In particular, the nodes and edges in the graph refer to the ports and channels in the grid topology. Different applications on the grid can be transformed into queries over the graph. Hence, in this paper, we build our grid simulation model based on the Neo4 j graph database. We also propose a fault extension algorithm based on predicate calculus. Our experiment evaluations show that the proposed approach can effectively improve the efficiency of the power grid.展开更多
With the rapid growth in the availability of digital health-related data,there is a great demand for the utilization of intelligent information systems within the healthcare sector.These systems can manage and manipul...With the rapid growth in the availability of digital health-related data,there is a great demand for the utilization of intelligent information systems within the healthcare sector.These systems can manage and manipulate this massive amount of health-related data and encourage different decision-making tasks.They can also provide various sustainable health services such as medical error reduction,diagnosis acceleration,and clinical services quality improvement.The intensive care unit(ICU)is one of the most important hospital units.However,there are limited rooms and resources in most hospitals.During times of seasonal diseases and pandemics,ICUs face high admission demand.In line with this increasing number of admissions,determining health risk levels has become an essential and imperative task.It creates a heightened demand for the implementation of an expert decision support system,enabling doctors to accurately and swiftly determine the risk level of patients.Therefore,this study proposes a fuzzy logic inference system built on domain-specific knowledge graphs,as a proof-of-concept,for tackling this healthcare-related issue.The system employs a combination of two sets of fuzzy input parameters to classify health risk levels of new admissions to hospitals.The proposed system implemented utilizes MATLAB Fuzzy Logic Toolbox via several experiments showing the validity of the proposed system.展开更多
基金supported by the National Key R&D Program of China(2020YFB0905900).
文摘The construction of new power systems presents higher requirements for the Power Internet of Things(PIoT)technology.The“source-grid-load-storage”architecture of a new power system requires PIoT to have a stronger multi-source heterogeneous data fusion ability.Native graph databases have great advantages in dealing with multi-source heterogeneous data,which make them suitable for an increasing number of analytical computing tasks.However,only few existing graph database products have native support for matrix operation-related interfaces or functions,resulting in low efficiency when handling matrix calculations that are commonly encountered in power grids.In this paper,the matrix computation process is expressed by a strategy called graph description,which relies on the natural connection between the matrix and structure of the graph.Based on that,we implement matrix operations on graph database,including matrix multiplication,matrix decomposition,etc.Specifically,only the nodes relevant to the computation and their neighbors are concerned in the process,which prunes the influence of zero elements in the matrix and avoids useless iterations compared to the conventional matrix computation.Based on the graph description,a series of power grid computations can be implemented on graph database,which reduces redundant data import and export operations while leveraging the parallel computing capability of graph database.It promotes the efficiency of PIoT when handling multi-source heterogeneous data.An comprehensive experimental study over two different scale power system datasets compares the proposed method with Python and MATLAB baselines.The results reveal the superior performance of our proposed method in both power flow and N-1 contingency computations.
文摘The query optimizer uses cost-based optimization to create an execution plan with the least cost,which also consumes the least amount of resources.The challenge of query optimization for relational database systems is a combinatorial optimization problem,which renders exhaustive search impossible as query sizes rise.Increases in CPU performance have surpassed main memory,and disk access speeds in recent decades,allowing data compression to be used—strategies for improving database performance systems.For performance enhancement,compression and query optimization are the two most factors.Compression reduces the volume of data,whereas query optimization minimizes execution time.Compressing the database reduces memory requirement,data takes less time to load into memory,fewer buffer missing occur,and the size of intermediate results is more diminutive.This paper performed query optimization on the graph database in a cloud dew environment by considering,which requires less time to execute a query.The factors compression and query optimization improve the performance of the databases.This research compares the performance of MySQL and Neo4j databases in terms of memory usage and execution time running on cloud dew servers.
基金supported by the Research Fund of National Key Laboratory of Computer Architecture under Grant No.CARCH201501the Open Project Program of the State Key Laboratory of Mathematical Engineering and Advanced Computing under Grant No.2016A09
文摘In this paper, we approach the design of ID caching technology(IDCT) for graph databases, with the purpose of accelerating the queries on graph database data and avoiding redundant graph database query operations which will consume great computer resources. Traditional graph database caching technology(GDCT)needs a large memory to store data and has the problems of serious data consistency and low cache utilization. To address these issues, in the paper we propose a new technology which focuses on ID allocation mechanism and high-speed queries of ID on graph databases. Specifically, ID of the query result is cached in memory and data consistency is achieved through the real-time synchronization and cache memory adaptation. In addition, we set up complex queries and simple queries to satisfy all query requirements and design a mechanism of cache replacement based on query action time, query times, and memory capacity, thus improving the performance furthermore.Extensive experiments show the superiority of our techniques compared with the traditional query approach of graph databases.
文摘With the globalization of NBA, all eyes on the NBA playoffs are around the world. Ones celebrate the winning of their team which they like. Especially, NBA fans keep on predicting the playoffs game results. However, prediction of winning probability of teams in NBA playoffs is challenging. In order to meet the challenges, we proposed a method using ELO algorithm for prediction and leveraging Graph Database, Neo4j, for implementation. Experiment results show that, the design and implementation of the prediction system could work to some degree.
基金supported by ANID-Millennium Science Initiative Program-Code ICN17_002。
文摘In this systems paper,we present MillenniumDB:a novel graph database engine that is modular,persistent,and open source.MillenniumDB is based on a graph data model,which we call domain graphs,that provides a simple abstraction upon which a variety of popular graph models can be supported,thus providing a flexible data management engine for diverse types of knowledge graph.The engine itself is founded on a combination of tried and tested techniques from relational data management,state-of-the-art algorithms for worst-case-optimal joins,as well as graph-specific algorithms for evaluating path queries.In this paper,we present the main design principles underlying MillenniumDB,describing the abstract graph model and query semantics supported,the concrete data model and query syntax implemented,as well as the storage,indexing,query planning and query evaluation techniques used.We evaluate MillenniumDB over real-world data and queries from the Wikidata knowledge graph,where we find that it outperforms other popular persistent graph database engines(including both enterprise and open source alternatives)that support similarqueryfeatures.
基金supported by the Science and Technology Project of State Grid Corporation of China(Grant No.5211XT17001N)
文摘The power communication network can be abstracted as a graph based on its topology. In this paper, we propose an approach to conduct simulations of power communication network based on its graph representation. In particular, the nodes and edges in the graph refer to the ports and channels in the grid topology. Different applications on the grid can be transformed into queries over the graph. Hence, in this paper, we build our grid simulation model based on the Neo4 j graph database. We also propose a fault extension algorithm based on predicate calculus. Our experiment evaluations show that the proposed approach can effectively improve the efficiency of the power grid.
基金funded by the Deanship of Scientific Research at Umm Al-Qura University,Makkah,Kingdom of Saudi Arabia.Under Grant Code:22UQU4281755DSR05.
文摘With the rapid growth in the availability of digital health-related data,there is a great demand for the utilization of intelligent information systems within the healthcare sector.These systems can manage and manipulate this massive amount of health-related data and encourage different decision-making tasks.They can also provide various sustainable health services such as medical error reduction,diagnosis acceleration,and clinical services quality improvement.The intensive care unit(ICU)is one of the most important hospital units.However,there are limited rooms and resources in most hospitals.During times of seasonal diseases and pandemics,ICUs face high admission demand.In line with this increasing number of admissions,determining health risk levels has become an essential and imperative task.It creates a heightened demand for the implementation of an expert decision support system,enabling doctors to accurately and swiftly determine the risk level of patients.Therefore,this study proposes a fuzzy logic inference system built on domain-specific knowledge graphs,as a proof-of-concept,for tackling this healthcare-related issue.The system employs a combination of two sets of fuzzy input parameters to classify health risk levels of new admissions to hospitals.The proposed system implemented utilizes MATLAB Fuzzy Logic Toolbox via several experiments showing the validity of the proposed system.