Recent years have witnessed significant advances in utilizing machine learning-based techniques for thermal metamaterial-based structures and devices to attain favorable thermal transport behaviors.Among the various t...Recent years have witnessed significant advances in utilizing machine learning-based techniques for thermal metamaterial-based structures and devices to attain favorable thermal transport behaviors.Among the various thermal transport behaviors,achieving thermal transparency stands out as particularly desirable and intriguing.Our earlier work demonstrated the use of a thermal metamaterial-based periodic interparticle system as the underlying structure for manipulating thermal transport behavior and achieving thermal transparency.In this paper,we introduce an approach based on graph neural network to address the complex inverse design problem of determining the design parameters for a thermal metamaterial-based periodic interparticle system with the desired thermal transport behavior.Our work demonstrates that combining graph neural network modeling and inference is an effective approach for solving inverse design problems associated with attaining desirable thermal transport behaviors using thermal metamaterials.展开更多
The acquisition of valuable design knowledge from massive fragmentary data is challenging for designers in conceptual product design.This study proposes a novel method for acquiring design knowledge by combining deep ...The acquisition of valuable design knowledge from massive fragmentary data is challenging for designers in conceptual product design.This study proposes a novel method for acquiring design knowledge by combining deep learning with knowledge graph.Specifically,the design knowledge acquisition method utilises the knowledge extraction model to extract design-related entities and relations from fragmentary data,and further constructs the knowledge graph to support design knowledge acquisition for conceptual product design.Moreover,the knowledge extraction model introduces ALBERT to solve memory limitation and communication overhead in the entity extraction module,and uses multi-granularity information to overcome segmentation errors and polysemy ambiguity in the relation extraction module.Experimental comparison verified the effectiveness and accuracy of the proposed knowledge extraction model.The case study demonstrated the feasibility of the knowledge graph construction with real fragmentary porcelain data and showed the capability to provide designers with interconnected and visualised design knowledge.展开更多
Graph designs for all graphs with six vertices and eight edges are discussed. The existence of these graph designs are completely solved except in two possible cases of order 32.
The design synthesis is the key issue in the mechanical conceptual design to generate the design candidates that meet the design requirements.This paper devotes to propose a novel and computable synthesis approach of ...The design synthesis is the key issue in the mechanical conceptual design to generate the design candidates that meet the design requirements.This paper devotes to propose a novel and computable synthesis approach of mechanisms based on graph theory and polynomial operation.The graph framework of the synthesis approach is built firstly,and it involves:(1)the kinematic function units extracted from mechanisms;(2)the kinematic link graph that transforms the synthesis problem from mechanical domain into graph domain;(3)two graph representations,i.e.,walk representation and path representation,of design candidates;(4)a weighted matrix theorem that transforms the synthesis process into polynomial operation.Then,the formulas and algorithm to the polynomial operation are presented.Based on them,the computational flowchart to the synthesis approach is summarized.A design example is used to validate and illustrate the synthesis approach in detail.The proposed synthesis approach is not only supportive to enumerate the design candidates to the conceptual design of a mechanical system exhaustively and automatically,but also helpful to make that enumeration process computable.展开更多
The identification of design pattern instances is important for program understanding and software maintenance. Aiming at the mining of design patterns in existing systems, this paper proposes a subgraph isomorphism a...The identification of design pattern instances is important for program understanding and software maintenance. Aiming at the mining of design patterns in existing systems, this paper proposes a subgraph isomorphism approach to discover several design patterns in a legacy system at a time. The attributed relational graph is used to describe design patterns and legacy systems. The sub-graph isomorphism approach consists of decomposition and composition process. During the decomposition process, graphs corresponding to the design patterns are decomposed into sub-graphs, some of which are graphs corresponding to the elemental design patterns. The composition process tries to get sub-graph isomorphism of the matched graph if sub-graph isomorphism of each subgraph is obtained. Due to the common structures between design patterns, the proposed approach can reduce the matching times of entities and relations. Compared with the existing methods, the proposed algorithm is not linearly dependent on the number of design pattern graphs. Key words design pattern mining - attributed relational graph - subgraph isomorphism CLC number TP 311.5 Foundation item: Supported by the National Natural Science Foundation of China (60273075) and the Science Foundation of Naval University of Engineering (HGDJJ03019)Biography: LI Qing-hua (1940-), male, Professor, research direction: parallel computing.展开更多
New theories,methodologies,and technologies have been continuously invented and widely applied in modern software development,along with many new tools and best practices that are of remarkable significance in the sof...New theories,methodologies,and technologies have been continuously invented and widely applied in modern software development,along with many new tools and best practices that are of remarkable significance in the software industry.In Software Engineering(SE)programs of universities,it is quite difficult for their curricula to chase after the fast-evolving technology trend.As a consequence,there have been significant challenges in designing an evolvable SE curriculum.In this paper,we present a knowledge graph based curriculum design method for SE programs.Knowledge Points(KPs)are organized into a multi-layer and multi-dimensionally annotated knowledge graph called SEKG,and five principles are applied to partition the SEKG into a set of inter-related courses.Metrics for evaluating the quality of an SE curriculum are briefly discussed.This method can not only help design a systematic curriculum from existing software engineering KPs but also facilitate curriculum evolution to adapt to technology trends.展开更多
The hardware optimization technique of mono similarity system generation is presented based on hardware/software(HW/SW) co design.First,the coarse structure of sub graphs' matching based on full customized HW...The hardware optimization technique of mono similarity system generation is presented based on hardware/software(HW/SW) co design.First,the coarse structure of sub graphs' matching based on full customized HW/SW co design is put forward.Then,a universal sub graphs' combination method is discussed.Next,a more advanced vertexes' compression algorithm based on sub graphs' combination method is discussed with great emphasis.Experiments are done successfully with perfect results verifying all the formulas and the methods above.展开更多
Green design and manufacturing is a proactive approach to minimize wastes during a product’s design stage, thus preventing future environmental impacts. Current modular design method mainly focuses on product functio...Green design and manufacturing is a proactive approach to minimize wastes during a product’s design stage, thus preventing future environmental impacts. Current modular design method mainly focuses on product functional and manufacturing issues. In this paper, a theoretical scheme of multi-objective modularity analysis for discrete electromechanical product design was proposed. Product physical architecture was represented by a fuzzy graph, where fuzzy relationships contain environmental objectives and influence module formulation. Finally the optimal product modules combining all objectives can be searched by clustering algorithm.展开更多
Multi-component mooring systems become widely used in deep water position-keeping of drilling and production platforms. However, versatile materials make it difficult to design appropriate mooring lines made of severa...Multi-component mooring systems become widely used in deep water position-keeping of drilling and production platforms. However, versatile materials make it difficult to design appropriate mooring lines made of several segments. Based on catenary equations of a multi-component mooring line at a specific water depth, this paper establishes a minimum model for designing this kind of lines. The model is solved by Genetic Algorithm and Multi-Objective Planning respectively. The model is verified by its application to a practical mooring design assignment—a quasi-static analysis for a large semi-submersible. The optimal result is finally obtained with the aid of design graphs.展开更多
The detection of error and its correction is an important area of mathematics that is vastly constructed in all communication systems.Furthermore,combinatorial design theory has several applications like detecting or ...The detection of error and its correction is an important area of mathematics that is vastly constructed in all communication systems.Furthermore,combinatorial design theory has several applications like detecting or correcting errors in communication systems.Network(graph)designs(GDs)are introduced as a generalization of the symmetric balanced incomplete block designs(BIBDs)that are utilized directly in the above mentioned application.The networks(graphs)have been represented by vectors whose entries are the labels of the vertices related to the lengths of edges linked to it.Here,a general method is proposed and applied to construct new networks designs.This method of networks representation has simplified the method of constructing the network designs.In this paper,a novel representation of networks is introduced and used as a technique of constructing the group generated network designs of the complete bipartite networks and certain circulants.A technique of constructing the group generated network designs of the circulants is given with group generated graph designs(GDs)of certain circulants.In addition,the GDs are transformed into an incidence matrices,the rows and the columns of these matrices can be both viewed as a binary nonlinear code.A novel coding error detection and correction application is proposed and examined.展开更多
The vertex connectivity k(G) of a graph G is the minimum number of nodes whose deletion disconnects it. Graph connectivity is one of the most fundamental problems in graph theory. In this paper, we designed an O(n2) t...The vertex connectivity k(G) of a graph G is the minimum number of nodes whose deletion disconnects it. Graph connectivity is one of the most fundamental problems in graph theory. In this paper, we designed an O(n2) time algorithm to solve connectivity problem on circular trapezoid graphs.展开更多
Given a simple graph G with n vertices, m edges and k connected components. The spanning forest problem is to find a spanning tree for each connected component of G. This problem has applications to the electrical pow...Given a simple graph G with n vertices, m edges and k connected components. The spanning forest problem is to find a spanning tree for each connected component of G. This problem has applications to the electrical power demand problem, computer network design, circuit analysis, etc. In this paper, we present an?time parallel algorithm with processors for constructing a spanning forest on proper circle graph G on EREW PRAM.展开更多
Given a simple graph G with n vertices and m edges, the spanning tree problem is to find a spanning tree for a given graph G. This problem has many applications, such as electric power systems, computer network design...Given a simple graph G with n vertices and m edges, the spanning tree problem is to find a spanning tree for a given graph G. This problem has many applications, such as electric power systems, computer network design and circuit analysis. For a simple graph, the spanning tree problem can be solved in O(log n) time with O(m+n) processors on the CRCW PRAM. In general, it is known that more efficient parallel algorithms can be developed by restricting classes of graphs. In this paper, we shall propose a parallel algorithm which runs O(log n) time with O(n/log n) processors on the EREW PRAM for constructing on proper circle trapezoid graphs.展开更多
This work presents the design of an Internet of Things(IoT)edge-based system based on model transformation and complete weighted graph to detect violations of social distancing measures in indoor public places.Awirele...This work presents the design of an Internet of Things(IoT)edge-based system based on model transformation and complete weighted graph to detect violations of social distancing measures in indoor public places.Awireless sensor network based on Bluetooth Low Energy is introduced as the infrastructure of the proposed design.A hybrid model transformation strategy for generating a graph database to represent groups of people is presented as a core middleware layer of the detecting system’s proposed architectural design.A Neo4j graph database is used as a target implementation generated from the proposed transformational system to store all captured real-time IoT data about the distances between individuals in an indoor area and answer user predefined queries,expressed using Neo4j Cypher,to provide insights from the stored data for decision support.As proof of concept,a discrete-time simulation model was adopted for the design of a COVID-19 physical distancing measures case study to evaluate the introduced system architecture.Twenty-one weighted graphs were generated randomly and the degrees of violation of distancing measures were inspected.The experimental results demonstrate the capability of the proposed system design to detect violations of COVID-19 physical distancing measures within an enclosed area.展开更多
A collection of k-matchings of bipartite graph Kn,n with the property thatevery pair of independent edges lies in exactly λ of the k-matchings is called aBIMATCH(n,k,λ)-design. Existences and constructions for vario...A collection of k-matchings of bipartite graph Kn,n with the property thatevery pair of independent edges lies in exactly λ of the k-matchings is called aBIMATCH(n,k,λ)-design. Existences and constructions for various BIMATCH (n,k,λ)designs are given.展开更多
<div style="text-align:justify;"> <span style="font-family:Verdana;">In the field of design theory, the most well-known design is a Steiner Triple System. In general, a G-design on H is...<div style="text-align:justify;"> <span style="font-family:Verdana;">In the field of design theory, the most well-known design is a Steiner Triple System. In general, a G-design on H is an edge-disjoint decomposition of H into isomorphic copies of G. In a Steiner Triple system, a complete graph is decomposed into triangles. In this paper we let H be a complete graph with a hole and G be a complete graph on four vertices minus one edge, also referred to as a <img alt="" src="Edit_e69ee166-4bbc-48f5-8ba1-b446e7d3738c.png" /> . A complete graph with a hole, <img alt="" src="Edit_558c249b-55e8-4f3b-a043-e36d001c4250.png" />, consists of a complete graph on <em>d</em> vertices, <img alt="" src="Edit_cb1772f7-837c-4aea-b4a6-cb38565f5a8b.png" />, and a set of independent vertices of size<em> v, V,</em> where each vertex in <em>V</em> is adjacent to each vertex in <img alt="" src="Edit_cb1772f7-837c-4aea-b4a6-cb38565f5a8b.png" />. When <em>d</em> is even, we give two constructions for the decomposition of a complete graph with a hole into copies of <img alt="" src="Edit_e69ee166-4bbc-48f5-8ba1-b446e7d3738c.png" /> : the Alpha-Delta Construction, and the Alpha-Beta-Delta Construction. By restricting <em>d</em> and <em>v</em> so that <img alt="" src="Edit_6bb9e3b4-1769-4b28-bf89-bc97c47c637e.png" /><span style="white-space:nowrap;"> </span>, we are able to resolve both of these cases for a subset of <img alt="" src="Edit_558c249b-55e8-4f3b-a043-e36d001c4250.png" />using difference methods and 1-factors.</span> </div>展开更多
基金funding from the National Natural Science Foundation of China (Grant Nos.12035004 and 12320101004)the Innovation Program of Shanghai Municipal Education Commission (Grant No.2023ZKZD06).
文摘Recent years have witnessed significant advances in utilizing machine learning-based techniques for thermal metamaterial-based structures and devices to attain favorable thermal transport behaviors.Among the various thermal transport behaviors,achieving thermal transparency stands out as particularly desirable and intriguing.Our earlier work demonstrated the use of a thermal metamaterial-based periodic interparticle system as the underlying structure for manipulating thermal transport behavior and achieving thermal transparency.In this paper,we introduce an approach based on graph neural network to address the complex inverse design problem of determining the design parameters for a thermal metamaterial-based periodic interparticle system with the desired thermal transport behavior.Our work demonstrates that combining graph neural network modeling and inference is an effective approach for solving inverse design problems associated with attaining desirable thermal transport behaviors using thermal metamaterials.
基金This research is supported by the Chinese Special Projects of the National Key Research and Development Plan(2019YFB1405702).
文摘The acquisition of valuable design knowledge from massive fragmentary data is challenging for designers in conceptual product design.This study proposes a novel method for acquiring design knowledge by combining deep learning with knowledge graph.Specifically,the design knowledge acquisition method utilises the knowledge extraction model to extract design-related entities and relations from fragmentary data,and further constructs the knowledge graph to support design knowledge acquisition for conceptual product design.Moreover,the knowledge extraction model introduces ALBERT to solve memory limitation and communication overhead in the entity extraction module,and uses multi-granularity information to overcome segmentation errors and polysemy ambiguity in the relation extraction module.Experimental comparison verified the effectiveness and accuracy of the proposed knowledge extraction model.The case study demonstrated the feasibility of the knowledge graph construction with real fragmentary porcelain data and showed the capability to provide designers with interconnected and visualised design knowledge.
基金Supported by the Natural Science Foundation of China (No.10371031) and Natural Science Foundation of Hebei (No.103146).
文摘Graph designs for all graphs with six vertices and eight edges are discussed. The existence of these graph designs are completely solved except in two possible cases of order 32.
基金Supported by State Key Program of National Natural Science Foundation of China(Grant No.51535009)111 Project of China(Grant No.B13044).
文摘The design synthesis is the key issue in the mechanical conceptual design to generate the design candidates that meet the design requirements.This paper devotes to propose a novel and computable synthesis approach of mechanisms based on graph theory and polynomial operation.The graph framework of the synthesis approach is built firstly,and it involves:(1)the kinematic function units extracted from mechanisms;(2)the kinematic link graph that transforms the synthesis problem from mechanical domain into graph domain;(3)two graph representations,i.e.,walk representation and path representation,of design candidates;(4)a weighted matrix theorem that transforms the synthesis process into polynomial operation.Then,the formulas and algorithm to the polynomial operation are presented.Based on them,the computational flowchart to the synthesis approach is summarized.A design example is used to validate and illustrate the synthesis approach in detail.The proposed synthesis approach is not only supportive to enumerate the design candidates to the conceptual design of a mechanical system exhaustively and automatically,but also helpful to make that enumeration process computable.
文摘The identification of design pattern instances is important for program understanding and software maintenance. Aiming at the mining of design patterns in existing systems, this paper proposes a subgraph isomorphism approach to discover several design patterns in a legacy system at a time. The attributed relational graph is used to describe design patterns and legacy systems. The sub-graph isomorphism approach consists of decomposition and composition process. During the decomposition process, graphs corresponding to the design patterns are decomposed into sub-graphs, some of which are graphs corresponding to the elemental design patterns. The composition process tries to get sub-graph isomorphism of the matched graph if sub-graph isomorphism of each subgraph is obtained. Due to the common structures between design patterns, the proposed approach can reduce the matching times of entities and relations. Compared with the existing methods, the proposed algorithm is not linearly dependent on the number of design pattern graphs. Key words design pattern mining - attributed relational graph - subgraph isomorphism CLC number TP 311.5 Foundation item: Supported by the National Natural Science Foundation of China (60273075) and the Science Foundation of Naval University of Engineering (HGDJJ03019)Biography: LI Qing-hua (1940-), male, Professor, research direction: parallel computing.
文摘New theories,methodologies,and technologies have been continuously invented and widely applied in modern software development,along with many new tools and best practices that are of remarkable significance in the software industry.In Software Engineering(SE)programs of universities,it is quite difficult for their curricula to chase after the fast-evolving technology trend.As a consequence,there have been significant challenges in designing an evolvable SE curriculum.In this paper,we present a knowledge graph based curriculum design method for SE programs.Knowledge Points(KPs)are organized into a multi-layer and multi-dimensionally annotated knowledge graph called SEKG,and five principles are applied to partition the SEKG into a set of inter-related courses.Metrics for evaluating the quality of an SE curriculum are briefly discussed.This method can not only help design a systematic curriculum from existing software engineering KPs but also facilitate curriculum evolution to adapt to technology trends.
文摘The hardware optimization technique of mono similarity system generation is presented based on hardware/software(HW/SW) co design.First,the coarse structure of sub graphs' matching based on full customized HW/SW co design is put forward.Then,a universal sub graphs' combination method is discussed.Next,a more advanced vertexes' compression algorithm based on sub graphs' combination method is discussed with great emphasis.Experiments are done successfully with perfect results verifying all the formulas and the methods above.
基金National Natural Science Foundation ofChina (No.50375086)
文摘Green design and manufacturing is a proactive approach to minimize wastes during a product’s design stage, thus preventing future environmental impacts. Current modular design method mainly focuses on product functional and manufacturing issues. In this paper, a theoretical scheme of multi-objective modularity analysis for discrete electromechanical product design was proposed. Product physical architecture was represented by a fuzzy graph, where fuzzy relationships contain environmental objectives and influence module formulation. Finally the optimal product modules combining all objectives can be searched by clustering algorithm.
文摘Multi-component mooring systems become widely used in deep water position-keeping of drilling and production platforms. However, versatile materials make it difficult to design appropriate mooring lines made of several segments. Based on catenary equations of a multi-component mooring line at a specific water depth, this paper establishes a minimum model for designing this kind of lines. The model is solved by Genetic Algorithm and Multi-Objective Planning respectively. The model is verified by its application to a practical mooring design assignment—a quasi-static analysis for a large semi-submersible. The optimal result is finally obtained with the aid of design graphs.
基金support from Taif University Researchers Supporting Project Number(TURSP-2020/031),Taif University,Taif,Saudi Arabia.
文摘The detection of error and its correction is an important area of mathematics that is vastly constructed in all communication systems.Furthermore,combinatorial design theory has several applications like detecting or correcting errors in communication systems.Network(graph)designs(GDs)are introduced as a generalization of the symmetric balanced incomplete block designs(BIBDs)that are utilized directly in the above mentioned application.The networks(graphs)have been represented by vectors whose entries are the labels of the vertices related to the lengths of edges linked to it.Here,a general method is proposed and applied to construct new networks designs.This method of networks representation has simplified the method of constructing the network designs.In this paper,a novel representation of networks is introduced and used as a technique of constructing the group generated network designs of the complete bipartite networks and certain circulants.A technique of constructing the group generated network designs of the circulants is given with group generated graph designs(GDs)of certain circulants.In addition,the GDs are transformed into an incidence matrices,the rows and the columns of these matrices can be both viewed as a binary nonlinear code.A novel coding error detection and correction application is proposed and examined.
文摘The vertex connectivity k(G) of a graph G is the minimum number of nodes whose deletion disconnects it. Graph connectivity is one of the most fundamental problems in graph theory. In this paper, we designed an O(n2) time algorithm to solve connectivity problem on circular trapezoid graphs.
文摘Given a simple graph G with n vertices, m edges and k connected components. The spanning forest problem is to find a spanning tree for each connected component of G. This problem has applications to the electrical power demand problem, computer network design, circuit analysis, etc. In this paper, we present an?time parallel algorithm with processors for constructing a spanning forest on proper circle graph G on EREW PRAM.
文摘Given a simple graph G with n vertices and m edges, the spanning tree problem is to find a spanning tree for a given graph G. This problem has many applications, such as electric power systems, computer network design and circuit analysis. For a simple graph, the spanning tree problem can be solved in O(log n) time with O(m+n) processors on the CRCW PRAM. In general, it is known that more efficient parallel algorithms can be developed by restricting classes of graphs. In this paper, we shall propose a parallel algorithm which runs O(log n) time with O(n/log n) processors on the EREW PRAM for constructing on proper circle trapezoid graphs.
文摘This work presents the design of an Internet of Things(IoT)edge-based system based on model transformation and complete weighted graph to detect violations of social distancing measures in indoor public places.Awireless sensor network based on Bluetooth Low Energy is introduced as the infrastructure of the proposed design.A hybrid model transformation strategy for generating a graph database to represent groups of people is presented as a core middleware layer of the detecting system’s proposed architectural design.A Neo4j graph database is used as a target implementation generated from the proposed transformational system to store all captured real-time IoT data about the distances between individuals in an indoor area and answer user predefined queries,expressed using Neo4j Cypher,to provide insights from the stored data for decision support.As proof of concept,a discrete-time simulation model was adopted for the design of a COVID-19 physical distancing measures case study to evaluate the introduced system architecture.Twenty-one weighted graphs were generated randomly and the degrees of violation of distancing measures were inspected.The experimental results demonstrate the capability of the proposed system design to detect violations of COVID-19 physical distancing measures within an enclosed area.
文摘A collection of k-matchings of bipartite graph Kn,n with the property thatevery pair of independent edges lies in exactly λ of the k-matchings is called aBIMATCH(n,k,λ)-design. Existences and constructions for various BIMATCH (n,k,λ)designs are given.
文摘<div style="text-align:justify;"> <span style="font-family:Verdana;">In the field of design theory, the most well-known design is a Steiner Triple System. In general, a G-design on H is an edge-disjoint decomposition of H into isomorphic copies of G. In a Steiner Triple system, a complete graph is decomposed into triangles. In this paper we let H be a complete graph with a hole and G be a complete graph on four vertices minus one edge, also referred to as a <img alt="" src="Edit_e69ee166-4bbc-48f5-8ba1-b446e7d3738c.png" /> . A complete graph with a hole, <img alt="" src="Edit_558c249b-55e8-4f3b-a043-e36d001c4250.png" />, consists of a complete graph on <em>d</em> vertices, <img alt="" src="Edit_cb1772f7-837c-4aea-b4a6-cb38565f5a8b.png" />, and a set of independent vertices of size<em> v, V,</em> where each vertex in <em>V</em> is adjacent to each vertex in <img alt="" src="Edit_cb1772f7-837c-4aea-b4a6-cb38565f5a8b.png" />. When <em>d</em> is even, we give two constructions for the decomposition of a complete graph with a hole into copies of <img alt="" src="Edit_e69ee166-4bbc-48f5-8ba1-b446e7d3738c.png" /> : the Alpha-Delta Construction, and the Alpha-Beta-Delta Construction. By restricting <em>d</em> and <em>v</em> so that <img alt="" src="Edit_6bb9e3b4-1769-4b28-bf89-bc97c47c637e.png" /><span style="white-space:nowrap;"> </span>, we are able to resolve both of these cases for a subset of <img alt="" src="Edit_558c249b-55e8-4f3b-a043-e36d001c4250.png" />using difference methods and 1-factors.</span> </div>