Cross-project software defect prediction(CPDP)aims to enhance defect prediction in target projects with limited or no historical data by leveraging information from related source projects.The existing CPDP approaches...Cross-project software defect prediction(CPDP)aims to enhance defect prediction in target projects with limited or no historical data by leveraging information from related source projects.The existing CPDP approaches rely on static metrics or dynamic syntactic features,which have shown limited effectiveness in CPDP due to their inability to capture higher-level system properties,such as complex design patterns,relationships between multiple functions,and dependencies in different software projects,that are important for CPDP.This paper introduces a novel approach,a graph-based feature learning model for CPDP(GB-CPDP),that utilizes NetworkX to extract features and learn representations of program entities from control flow graphs(CFGs)and data dependency graphs(DDGs).These graphs capture the structural and data dependencies within the source code.The proposed approach employs Node2Vec to transform CFGs and DDGs into numerical vectors and leverages Long Short-Term Memory(LSTM)networks to learn predictive models.The process involves graph construction,feature learning through graph embedding and LSTM,and defect prediction.Experimental evaluation using nine open-source Java projects from the PROMISE dataset demonstrates that GB-CPDP outperforms state-of-the-art CPDP methods in terms of F1-measure and Area Under the Curve(AUC).The results showcase the effectiveness of GB-CPDP in improving the performance of cross-project defect prediction.展开更多
With the development of Information technology and the popularization of Internet,whenever and wherever possible,people can connect to the Internet optionally.Meanwhile,the security of network traffic is threatened by...With the development of Information technology and the popularization of Internet,whenever and wherever possible,people can connect to the Internet optionally.Meanwhile,the security of network traffic is threatened by various of online malicious behaviors.The aim of an intrusion detection system(IDS)is to detect the network behaviors which are diverse and malicious.Since a conventional firewall cannot detect most of the malicious behaviors,such as malicious network traffic or computer abuse,some advanced learning methods are introduced and integrated with intrusion detection approaches in order to improve the performance of detection approaches.However,there are very few related studies focusing on both the effective detection for attacks and the representation for malicious behaviors with graph.In this paper,a novel intrusion detection approach IDBFG(Intrusion Detection Based on Feature Graph)is proposed which first filters normal connections with grid partitions,and then records the patterns of various attacks with a novel graph structure,and the behaviors in accordance with the patterns in graph are detected as intrusion behaviors.The experimental results on KDD-Cup 99 dataset show that IDBFG performs better than SVM(Supprot Vector Machines)and Decision Tree which are trained and tested in original feature space in terms of detection rates,false alarm rates and run time.展开更多
When a vehicle travels in urban areas, onboard global positioning system (GPS) signals may be obstructed by high-rise buildings and thereby cannot provide accurate positions. It is proposed to perform localization b...When a vehicle travels in urban areas, onboard global positioning system (GPS) signals may be obstructed by high-rise buildings and thereby cannot provide accurate positions. It is proposed to perform localization by registering ground images to a 2D building boundary map which is generated from aerial images. Multilayer feature graphs (MFG) is employed to model building facades from the ground images. MFG was reported in the previous work to facilitate the robot scene understand- ing in urhan areas. By constructing MFG, the 2D/3D positions of features can be obtained, inclu- cling line segments, ideal lines, and all primary vertical planes. Finally, a voting-based feature weighted localization method is developed based on MFGs and the 2D building boundary map. The proposed method has been implemented and validated in physical experiments. In the proposed ex- periments, the algorithm has achieved an overall localization accuracy of 2.2m, which is better than commercial GPS working in open environments.展开更多
Most solutions for detecting buffer overflow are based on source code. But the requirement tor source code is not always practical especially for business software. A new approach was presented to detect statically th...Most solutions for detecting buffer overflow are based on source code. But the requirement tor source code is not always practical especially for business software. A new approach was presented to detect statically the potential buffer overflow vulnerabilities in the binary code of software. The binary code was translated into assembly code without the lose of the information of string operation functions. The feature code abstract graph was constructed to generate more accurate constraint statements, and analyze the assembly code using the method of integer range constraint. After getting the elementary report on suspicious code where buffer overflows possibly happen, the control flow sensitive analysis using program dependence graph was done to decrease the rate of false positive. A prototype was implemented which demonstrates the feasibility and efficiency of the new approach.展开更多
Existing fault diagnosis methods usually assume that there are balanced training data for every machine health state.However,the collection of fault signals is very difficult and expensive,resulting in the problem of ...Existing fault diagnosis methods usually assume that there are balanced training data for every machine health state.However,the collection of fault signals is very difficult and expensive,resulting in the problem of imbalanced training dataset.It will degrade the performance of fault diagnosis methods significantly.To address this problem,an imbalanced fault diagnosis of rotating machinery using autoencoder-based SuperGraph feature learning is proposed in this paper.Unsupervised autoencoder is firstly used to compress every monitoring signal into a low-dimensional vector as the node attribute in the SuperGraph.And the edge connections in the graph depend on the relationship between signals.On the basis,graph convolution is performed on the constructed SuperGraph to achieve imbalanced training dataset fault diagnosis for rotating machinery.Comprehensive experiments are conducted on a benchmarking publicized dataset and a practical experimental platform,and the results show that the proposed method can effectively achieve rotating machinery fault diagnosis towards imbalanced training dataset through graph feature learning.展开更多
It is difficult to analyze semantic relations automatically, especially the semantic relations of Chinese special sentence patterns. In this paper, we apply a novel model feature structure to represent Chinese semanti...It is difficult to analyze semantic relations automatically, especially the semantic relations of Chinese special sentence patterns. In this paper, we apply a novel model feature structure to represent Chinese semantic relations, which is formalized as "recursive directed graph". We focus on Chinese special sentence patterns, including the complex noun phrase, verb-complement structure, pivotal sentences, serial verb sentence and subject-predicate predicate sentence. Feature structure facilitates a richer Chinese semantic information extraction when compared with dependency structure. The results show that using recursive directed graph is more suitable for extracting Chinese complex semantic relations.展开更多
The capacity that computer can solve more complex design problem was gradually increased. Bridge designs need a breakthrough in the current development limitations, and then become more intelligent and integrated. Thi...The capacity that computer can solve more complex design problem was gradually increased. Bridge designs need a breakthrough in the current development limitations, and then become more intelligent and integrated. This paper proposes a new parametric and feature-based computer aided design (CAD) models which can represent families of bridge objects, includes knowledge representation, three-dimensional geometric topology relationships. The realization of a family member is found by solving first the geometric constraints, and then the topological constraints. From the geometric solution, constraint equations are constructed. Topology solution is developed by feature dependencies graph between bridge objects. Finally, feature parameters are proposed to drive bridge design with feature parameters. Results from our implementation show that the method can help to facilitate bridge design.展开更多
基金supported by Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.RS-2022-00155885).
文摘Cross-project software defect prediction(CPDP)aims to enhance defect prediction in target projects with limited or no historical data by leveraging information from related source projects.The existing CPDP approaches rely on static metrics or dynamic syntactic features,which have shown limited effectiveness in CPDP due to their inability to capture higher-level system properties,such as complex design patterns,relationships between multiple functions,and dependencies in different software projects,that are important for CPDP.This paper introduces a novel approach,a graph-based feature learning model for CPDP(GB-CPDP),that utilizes NetworkX to extract features and learn representations of program entities from control flow graphs(CFGs)and data dependency graphs(DDGs).These graphs capture the structural and data dependencies within the source code.The proposed approach employs Node2Vec to transform CFGs and DDGs into numerical vectors and leverages Long Short-Term Memory(LSTM)networks to learn predictive models.The process involves graph construction,feature learning through graph embedding and LSTM,and defect prediction.Experimental evaluation using nine open-source Java projects from the PROMISE dataset demonstrates that GB-CPDP outperforms state-of-the-art CPDP methods in terms of F1-measure and Area Under the Curve(AUC).The results showcase the effectiveness of GB-CPDP in improving the performance of cross-project defect prediction.
基金This research was funded in part by the National Natural Science Foundation of China(61871140,61872100,61572153,U1636215,61572492,61672020)the National Key research and Development Plan(Grant No.2018YFB0803504)Open Fund of Beijing Key Laboratory of IOT Information Security Technology(J6V0011104).
文摘With the development of Information technology and the popularization of Internet,whenever and wherever possible,people can connect to the Internet optionally.Meanwhile,the security of network traffic is threatened by various of online malicious behaviors.The aim of an intrusion detection system(IDS)is to detect the network behaviors which are diverse and malicious.Since a conventional firewall cannot detect most of the malicious behaviors,such as malicious network traffic or computer abuse,some advanced learning methods are introduced and integrated with intrusion detection approaches in order to improve the performance of detection approaches.However,there are very few related studies focusing on both the effective detection for attacks and the representation for malicious behaviors with graph.In this paper,a novel intrusion detection approach IDBFG(Intrusion Detection Based on Feature Graph)is proposed which first filters normal connections with grid partitions,and then records the patterns of various attacks with a novel graph structure,and the behaviors in accordance with the patterns in graph are detected as intrusion behaviors.The experimental results on KDD-Cup 99 dataset show that IDBFG performs better than SVM(Supprot Vector Machines)and Decision Tree which are trained and tested in original feature space in terms of detection rates,false alarm rates and run time.
基金Supported by the National High Technology Research and Development Program of China(No.2012AA041403)National Natural Science Foundation of China(No.60905061,61305107)+1 种基金the Fundamental Research Funds for the Central Universities(No.ZXH2012N003)the Scientific Research Funds for Civil Aviation University of China(No.2012QD23x)
文摘When a vehicle travels in urban areas, onboard global positioning system (GPS) signals may be obstructed by high-rise buildings and thereby cannot provide accurate positions. It is proposed to perform localization by registering ground images to a 2D building boundary map which is generated from aerial images. Multilayer feature graphs (MFG) is employed to model building facades from the ground images. MFG was reported in the previous work to facilitate the robot scene understand- ing in urhan areas. By constructing MFG, the 2D/3D positions of features can be obtained, inclu- cling line segments, ideal lines, and all primary vertical planes. Finally, a voting-based feature weighted localization method is developed based on MFGs and the 2D building boundary map. The proposed method has been implemented and validated in physical experiments. In the proposed ex- periments, the algorithm has achieved an overall localization accuracy of 2.2m, which is better than commercial GPS working in open environments.
文摘Most solutions for detecting buffer overflow are based on source code. But the requirement tor source code is not always practical especially for business software. A new approach was presented to detect statically the potential buffer overflow vulnerabilities in the binary code of software. The binary code was translated into assembly code without the lose of the information of string operation functions. The feature code abstract graph was constructed to generate more accurate constraint statements, and analyze the assembly code using the method of integer range constraint. After getting the elementary report on suspicious code where buffer overflows possibly happen, the control flow sensitive analysis using program dependence graph was done to decrease the rate of false positive. A prototype was implemented which demonstrates the feasibility and efficiency of the new approach.
基金This work was supported by the National Key R&D Program of China(Grant No.2020YFB1711203).
文摘Existing fault diagnosis methods usually assume that there are balanced training data for every machine health state.However,the collection of fault signals is very difficult and expensive,resulting in the problem of imbalanced training dataset.It will degrade the performance of fault diagnosis methods significantly.To address this problem,an imbalanced fault diagnosis of rotating machinery using autoencoder-based SuperGraph feature learning is proposed in this paper.Unsupervised autoencoder is firstly used to compress every monitoring signal into a low-dimensional vector as the node attribute in the SuperGraph.And the edge connections in the graph depend on the relationship between signals.On the basis,graph convolution is performed on the constructed SuperGraph to achieve imbalanced training dataset fault diagnosis for rotating machinery.Comprehensive experiments are conducted on a benchmarking publicized dataset and a practical experimental platform,and the results show that the proposed method can effectively achieve rotating machinery fault diagnosis towards imbalanced training dataset through graph feature learning.
基金Supported by the National Natural Science Foundation of China(61202193,61202304)the Major Projects of Chinese National Social Science Foundation(11&ZD189)+2 种基金the Chinese Postdoctoral Science Foundation(2013M540593,2014T70722)the Accomplishments of Listed Subjects in Hubei Prime Subject Developmentthe Open Foundation of Shandong Key Lab of Language Resource Development and Application
文摘It is difficult to analyze semantic relations automatically, especially the semantic relations of Chinese special sentence patterns. In this paper, we apply a novel model feature structure to represent Chinese semantic relations, which is formalized as "recursive directed graph". We focus on Chinese special sentence patterns, including the complex noun phrase, verb-complement structure, pivotal sentences, serial verb sentence and subject-predicate predicate sentence. Feature structure facilitates a richer Chinese semantic information extraction when compared with dependency structure. The results show that using recursive directed graph is more suitable for extracting Chinese complex semantic relations.
基金the West Communication Science and Technology Project of Ministry of Communications (No. 200431822315)
文摘The capacity that computer can solve more complex design problem was gradually increased. Bridge designs need a breakthrough in the current development limitations, and then become more intelligent and integrated. This paper proposes a new parametric and feature-based computer aided design (CAD) models which can represent families of bridge objects, includes knowledge representation, three-dimensional geometric topology relationships. The realization of a family member is found by solving first the geometric constraints, and then the topological constraints. From the geometric solution, constraint equations are constructed. Topology solution is developed by feature dependencies graph between bridge objects. Finally, feature parameters are proposed to drive bridge design with feature parameters. Results from our implementation show that the method can help to facilitate bridge design.