期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于图框架变换的动态图神经网络模型
1
作者
杨圣鹏
施建栋
+1 位作者
周斯炜
李明
《浙江师范大学学报(自然科学版)》
2024年第1期19-28,共10页
为了有效地挖掘并利用动态图的低频和高频信息并捕捉其时空演变规律,提出了一种基于图小波的兼顾低通、高通滤波的多尺度图卷积,并将该卷积运算融入长短期记忆网络中,构建了一类基于图框架变换的动态图神经网络模型.在离散动态图的3个...
为了有效地挖掘并利用动态图的低频和高频信息并捕捉其时空演变规律,提出了一种基于图小波的兼顾低通、高通滤波的多尺度图卷积,并将该卷积运算融入长短期记忆网络中,构建了一类基于图框架变换的动态图神经网络模型.在离散动态图的3个基准数据集中采用2种不同的训练方式进行实验,对比了11种动态图表示学习方法.实验结果表明:所提模型通常能取得最优效果且稳定性更好,同时也验证了模型能够更好地捕获动态图的演变规律.
展开更多
关键词
多尺度图卷积
图框架变换
动态图神经网络
动态图表示学习
下载PDF
职称材料
题名
基于图框架变换的动态图神经网络模型
1
作者
杨圣鹏
施建栋
周斯炜
李明
机构
浙江师范大学计算机科学与技术学院
浙江师范大学浙江省智能教育技术与应用重点实验室
出处
《浙江师范大学学报(自然科学版)》
2024年第1期19-28,共10页
基金
浙江省教育厅科研项目(Y202249937)。
文摘
为了有效地挖掘并利用动态图的低频和高频信息并捕捉其时空演变规律,提出了一种基于图小波的兼顾低通、高通滤波的多尺度图卷积,并将该卷积运算融入长短期记忆网络中,构建了一类基于图框架变换的动态图神经网络模型.在离散动态图的3个基准数据集中采用2种不同的训练方式进行实验,对比了11种动态图表示学习方法.实验结果表明:所提模型通常能取得最优效果且稳定性更好,同时也验证了模型能够更好地捕获动态图的演变规律.
关键词
多尺度图卷积
图框架变换
动态图神经网络
动态图表示学习
Keywords
multi-resolution
graph
convolution
graph framelet transform
dynamic
graph
neural network
dynamic
graph
representation learning methods
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于图框架变换的动态图神经网络模型
杨圣鹏
施建栋
周斯炜
李明
《浙江师范大学学报(自然科学版)》
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部