Unsupervised learning methods such as graph contrastive learning have been used for dynamic graph represen-tation learning to eliminate the dependence of labels.However,existing studies neglect positional information ...Unsupervised learning methods such as graph contrastive learning have been used for dynamic graph represen-tation learning to eliminate the dependence of labels.However,existing studies neglect positional information when learning discrete snapshots,resulting in insufficient network topology learning.At the same time,due to the lack of appropriate data augmentation methods,it is difficult to capture the evolving patterns of the network effectively.To address the above problems,a position-aware and subgraph enhanced dynamic graph contrastive learning method is proposed for discrete-time dynamic graphs.Firstly,the global snapshot is built based on the historical snapshots to express the stable pattern of the dynamic graph,and the random walk is used to obtain the position representation by learning the positional information of the nodes.Secondly,a new data augmentation method is carried out from the perspectives of short-term changes and long-term stable structures of dynamic graphs.Specifically,subgraph sampling based on snapshots and global snapshots is used to obtain two structural augmentation views,and node structures and evolving patterns are learned by combining graph neural network,gated recurrent unit,and attention mechanism.Finally,the quality of node representation is improved by combining the contrastive learning between different structural augmentation views and between the two representations of structure and position.Experimental results on four real datasets show that the performance of the proposed method is better than the existing unsupervised methods,and it is more competitive than the supervised learning method under a semi-supervised setting.展开更多
Contrastive self‐supervised representation learning on attributed graph networks with Graph Neural Networks has attracted considerable research interest recently.However,there are still two challenges.First,most of t...Contrastive self‐supervised representation learning on attributed graph networks with Graph Neural Networks has attracted considerable research interest recently.However,there are still two challenges.First,most of the real‐word system are multiple relations,where entities are linked by different types of relations,and each relation is a view of the graph network.Second,the rich multi‐scale information(structure‐level and feature‐level)of the graph network can be seen as self‐supervised signals,which are not fully exploited.A novel contrastive self‐supervised representation learning framework on attributed multiplex graph networks with multi‐scale(named CoLM^(2)S)information is presented in this study.It mainly contains two components:intra‐relation contrast learning and interrelation contrastive learning.Specifically,the contrastive self‐supervised representation learning framework on attributed single‐layer graph networks with multi‐scale information(CoLMS)framework with the graph convolutional network as encoder to capture the intra‐relation information with multi‐scale structure‐level and feature‐level selfsupervised signals is introduced first.The structure‐level information includes the edge structure and sub‐graph structure,and the feature‐level information represents the output of different graph convolutional layer.Second,according to the consensus assumption among inter‐relations,the CoLM^(2)S framework is proposed to jointly learn various graph relations in attributed multiplex graph network to achieve global consensus node embedding.The proposed method can fully distil the graph information.Extensive experiments on unsupervised node clustering and graph visualisation tasks demonstrate the effectiveness of our methods,and it outperforms existing competitive baselines.展开更多
With the rapid advancement of 5G technology,the Internet of Things(IoT)has entered a new phase of appli-cations and is rapidly becoming a significant force in promoting economic development.Due to the vast amounts of ...With the rapid advancement of 5G technology,the Internet of Things(IoT)has entered a new phase of appli-cations and is rapidly becoming a significant force in promoting economic development.Due to the vast amounts of data created by numerous 5G IoT devices,the Ethereum platform has become a tool for the storage and sharing of IoT device data,thanks to its open and tamper-resistant characteristics.So,Ethereum account security is necessary for the Internet of Things to grow quickly and improve people's lives.By modeling Ethereum trans-action records as a transaction network,the account types are well identified by the Ethereum account classifi-cation system established based on Graph Neural Networks(GNNs).This work first investigates the Ethereum transaction network.Surprisingly,experimental metrics reveal that the Ethereum transaction network is neither optimal nor even satisfactory in terms of accurately representing transactions per account.This flaw may significantly impede the classification capability of GNNs,which is mostly governed by their attributes.This work proposes an Adaptive Multi-channel Bayesian Graph Attention Network(AMBGAT)for Ethereum account clas-sification to address this difficulty.AMBGAT uses attention to enhance node features,estimate graph topology that conforms to the ground truth,and efficiently extract node features pertinent to downstream tasks.An extensive experiment with actual Ethereum transaction data demonstrates that AMBGAT obtains competitive performance in the classification of Ethereum accounts while accurately estimating the graph topology.展开更多
Graph Neural Networks(GNNs)play a significant role in tasks related to homophilic graphs.Traditional GNNs,based on the assumption of homophily,employ low-pass filters for neighboring nodes to achieve information aggre...Graph Neural Networks(GNNs)play a significant role in tasks related to homophilic graphs.Traditional GNNs,based on the assumption of homophily,employ low-pass filters for neighboring nodes to achieve information aggregation and embedding.However,in heterophilic graphs,nodes from different categories often establish connections,while nodes of the same category are located further apart in the graph topology.This characteristic poses challenges to traditional GNNs,leading to issues of“distant node modeling deficiency”and“failure of the homophily assumption”.In response,this paper introduces the Spatial-Frequency domain Adaptive Heterophilic Graph Neural Networks(SFA-HGNN),which integrates adaptive embedding mechanisms for both spatial and frequency domains to address the aforementioned issues.Specifically,for the first problem,we propose the“Distant Spatial Embedding Module”,aiming to select and aggregate distant nodes through high-order randomwalk transition probabilities to enhance modeling capabilities.For the second issue,we design the“Proximal Frequency Domain Embedding Module”,constructing adaptive filters to separate high and low-frequency signals of nodes,and introduce frequency-domain guided attention mechanisms to fuse the relevant information,thereby reducing the noise introduced by the failure of the homophily assumption.We deploy the SFA-HGNN on six publicly available heterophilic networks,achieving state-of-the-art results in four of them.Furthermore,we elaborate on the hyperparameter selection mechanism and validate the performance of each module through experimentation,demonstrating a positive correlation between“node structural similarity”,“node attribute vector similarity”,and“node homophily”in heterophilic networks.展开更多
Various graph representation learning models convert graph nodes into vectors using techniques like matrix factorization,random walk,and deep learning.However,choosing the right method for different tasks can be chall...Various graph representation learning models convert graph nodes into vectors using techniques like matrix factorization,random walk,and deep learning.However,choosing the right method for different tasks can be challenging.Communities within networks help reveal underlying structures and correlations.Investigating how different models preserve community properties is crucial for identifying the best graph representation for data analysis.This paper defines indicators to explore the perceptual quality of community properties in representation learning spaces,including the consistency of community structure,node distribution within and between communities,and central node distribution.A visualization system presents these indicators,allowing users to evaluate models based on community structures.Case studies demonstrate the effectiveness of the indicators for the visual evaluation of graph representation learning models.展开更多
Accurate prediction of future events brings great benefits and reduces losses for society in many domains,such as civil unrest,pandemics,and crimes.Knowledge graph is a general language for describing and modeling com...Accurate prediction of future events brings great benefits and reduces losses for society in many domains,such as civil unrest,pandemics,and crimes.Knowledge graph is a general language for describing and modeling complex systems.Different types of events continually occur,which are often related to historical and concurrent events.In this paper,we formalize the future event prediction as a temporal knowledge graph reasoning problem.Most existing studies either conduct reasoning on static knowledge graphs or assume knowledges graphs of all timestamps are available during the training process.As a result,they cannot effectively reason over temporal knowledge graphs and predict events happening in the future.To address this problem,some recent works learn to infer future events based on historical eventbased temporal knowledge graphs.However,these methods do not comprehensively consider the latent patterns and influences behind historical events and concurrent events simultaneously.This paper proposes a new graph representation learning model,namely Recurrent Event Graph ATtention Network(RE-GAT),based on a novel historical and concurrent events attention-aware mechanism by modeling the event knowledge graph sequence recurrently.More specifically,our RE-GAT uses an attention-based historical events embedding module to encode past events,and employs an attention-based concurrent events embedding module to model the associations of events at the same timestamp.A translation-based decoder module and a learning objective are developed to optimize the embeddings of entities and relations.We evaluate our proposed method on four benchmark datasets.Extensive experimental results demonstrate the superiority of our RE-GAT model comparing to various base-lines,which proves that our method can more accurately predict what events are going to happen.展开更多
Inductive knowledge graph embedding(KGE)aims to embed unseen entities in emerging knowledge graphs(KGs).The major recent studies of inductive KGE embed unseen entities by aggregating information from their neighboring...Inductive knowledge graph embedding(KGE)aims to embed unseen entities in emerging knowledge graphs(KGs).The major recent studies of inductive KGE embed unseen entities by aggregating information from their neighboring entities and relations with graph neural networks(GNNs).However,these methods rely on the existing neighbors of unseen entities and suffer from two common problems:data sparsity and feature smoothing.Firstly,the data sparsity problem means unseen entities usually emerge with few triplets containing insufficient information.Secondly,the effectiveness of the features extracted from original KGs will degrade when repeatedly propagating these features to represent unseen entities in emerging KGs,which is termed feature smoothing problem.To tackle the two problems,we propose a novel model entitled Meta-Learning Based Memory Graph Convolutional Network(MMGCN)consisting of three different components:1)the two-layer information transforming module(TITM)developed to effectively transform information from original KGs to emerging KGs;2)the hyper-relation feature initializing module(HFIM)proposed to extract type-level features shared between KGs and obtain a coarse-grained representation for each entity with these features;and 3)the meta-learning training module(MTM)designed to simulate the few-shot emerging KGs and train the model in a meta-learning framework.The extensive experiments conducted on the few-shot link prediction task for emerging KGs demonstrate the superiority of our proposed model MMGCN compared with state-of-the-art methods.展开更多
Recently,self-supervised learning has shown great potential in Graph Neural Networks (GNNs) through contrastive learning,which aims to learn discriminative features for each node without label information. The key to ...Recently,self-supervised learning has shown great potential in Graph Neural Networks (GNNs) through contrastive learning,which aims to learn discriminative features for each node without label information. The key to graph contrastive learning is data augmentation. The anchor node regards its augmented samples as positive samples,and the rest of the samples are regarded as negative samples,some of which may be positive samples. We call these mislabeled samples as “false negative” samples,which will seriously affect the final learning effect. Since such semantically similar samples are ubiquitous in the graph,the problem of false negative samples is very significant. To address this issue,the paper proposes a novel model,False negative sample Detection for Graph Contrastive Learning (FD4GCL),which uses attribute and structure-aware to detect false negative samples. Experimental results on seven datasets show that FD4GCL outperforms the state-of-the-art baselines and even exceeds several supervised methods.展开更多
Financing needs exploration(FNE),which exploresfinancially constrained small-and medium-sized enterprises(SMEs),has become increasingly important in industry forfinancial institutions to facilitate SMEs’development.I...Financing needs exploration(FNE),which exploresfinancially constrained small-and medium-sized enterprises(SMEs),has become increasingly important in industry forfinancial institutions to facilitate SMEs’development.In this paper,wefirst perform an insightful exploratory analysis to exploit the transfer phenomenon offinancing needs among SMEs,which motivates us to fully exploit the multi-relation enterprise social network for boosting the effectiveness of FNE.The main challenge lies in modeling two kinds of heterogeneity,i.e.,transfer heterogeneity and SMEs’behavior heterogeneity,under different relation types simultaneously.To address these challenges,we propose a graph neural network named Multi-relation tRanslatIonal GrapH a Ttention network(M-RIGHT),which not only models the transfer heterogeneity offinancing needs along different relation types based on a novel entity–relation composition operator but also enables heterogeneous SMEs’representations based on a translation mechanism on relational hyperplanes to distinguish SMEs’heterogeneous behaviors under different relation types.Extensive experiments on two large-scale real-world datasets demonstrate M-RIGHT’s superiority over the state-of-the-art methods in the FNE task.展开更多
Prenatal depression,which can affect pregnant women’s physical and psychological health and cause postpartum depression,is increasing dramatically.Therefore,it is essential to detect prenatal depression early and con...Prenatal depression,which can affect pregnant women’s physical and psychological health and cause postpartum depression,is increasing dramatically.Therefore,it is essential to detect prenatal depression early and conduct an attribution analysis.Many studies have used questionnaires to screen for prenatal depression,but the existing methods lack attributability.To diagnose the early signs of prenatal depression and identify the key factors that may lead to prenatal depression from questionnaires,we present the semantically enhanced option embedding(SEOE)model to represent questionnaire options.It can quantitatively determine the relationship and patterns between options and depression.SEOE first quantifies options and resorts them,gathering options with little difference,since Word2Vec is highly dependent on context.The resort task is transformed into an optimization problem involving the traveling salesman problem.Moreover,all questionnaire samples are used to train the options’vector using Word2Vec.Finally,an LSTM and GRU fused model incorporating the cycle learning rate is constructed to detect whether a pregnant woman is suffering from depression.To verify the model,we compare it with other deep learning and traditional machine learning methods.The experiment results show that our proposed model can accurately identify pregnant women with depression and reach an F1 score of 0.8.The most relevant factors of depression found by SEOE are also verified in the literature.In addition,our model is of low computational complexity and strong generalization,which can be widely applied to other questionnaire analyses of psychiatric disorders.展开更多
Heterogeneous information networks(HINs)have been extensively applied to real-world tasks,such as recommendation systems,social networks,and citation networks.While existing HIN representation learning methods can eff...Heterogeneous information networks(HINs)have been extensively applied to real-world tasks,such as recommendation systems,social networks,and citation networks.While existing HIN representation learning methods can effectively learn the semantic and structural features in the network,little awareness was given to the distribution discrepancy of subgraphs within a single HIN.However,we find that ignoring such distribution discrepancy among subgraphs from multiple sources would hinder the effectiveness of graph embedding learning algorithms.This motivates us to propose SUMSHINE(Scalable Unsupervised Multi-Source Heterogeneous Information Network Embedding)-a scalable unsupervised framework to align the embedding distributions among multiple sources of an HiN.Experimental results on real-world datasets in a variety of downstream tasks validate the performance of our method over the state-of-the-art heterogeneous information network embedding algorithms.展开更多
文摘Unsupervised learning methods such as graph contrastive learning have been used for dynamic graph represen-tation learning to eliminate the dependence of labels.However,existing studies neglect positional information when learning discrete snapshots,resulting in insufficient network topology learning.At the same time,due to the lack of appropriate data augmentation methods,it is difficult to capture the evolving patterns of the network effectively.To address the above problems,a position-aware and subgraph enhanced dynamic graph contrastive learning method is proposed for discrete-time dynamic graphs.Firstly,the global snapshot is built based on the historical snapshots to express the stable pattern of the dynamic graph,and the random walk is used to obtain the position representation by learning the positional information of the nodes.Secondly,a new data augmentation method is carried out from the perspectives of short-term changes and long-term stable structures of dynamic graphs.Specifically,subgraph sampling based on snapshots and global snapshots is used to obtain two structural augmentation views,and node structures and evolving patterns are learned by combining graph neural network,gated recurrent unit,and attention mechanism.Finally,the quality of node representation is improved by combining the contrastive learning between different structural augmentation views and between the two representations of structure and position.Experimental results on four real datasets show that the performance of the proposed method is better than the existing unsupervised methods,and it is more competitive than the supervised learning method under a semi-supervised setting.
基金support by the National Natural Science Foundation of China(NSFC)under grant number 61873274.
文摘Contrastive self‐supervised representation learning on attributed graph networks with Graph Neural Networks has attracted considerable research interest recently.However,there are still two challenges.First,most of the real‐word system are multiple relations,where entities are linked by different types of relations,and each relation is a view of the graph network.Second,the rich multi‐scale information(structure‐level and feature‐level)of the graph network can be seen as self‐supervised signals,which are not fully exploited.A novel contrastive self‐supervised representation learning framework on attributed multiplex graph networks with multi‐scale(named CoLM^(2)S)information is presented in this study.It mainly contains two components:intra‐relation contrast learning and interrelation contrastive learning.Specifically,the contrastive self‐supervised representation learning framework on attributed single‐layer graph networks with multi‐scale information(CoLMS)framework with the graph convolutional network as encoder to capture the intra‐relation information with multi‐scale structure‐level and feature‐level selfsupervised signals is introduced first.The structure‐level information includes the edge structure and sub‐graph structure,and the feature‐level information represents the output of different graph convolutional layer.Second,according to the consensus assumption among inter‐relations,the CoLM^(2)S framework is proposed to jointly learn various graph relations in attributed multiplex graph network to achieve global consensus node embedding.The proposed method can fully distil the graph information.Extensive experiments on unsupervised node clustering and graph visualisation tasks demonstrate the effectiveness of our methods,and it outperforms existing competitive baselines.
基金supported in part by the National Natural Science Foundation of China under Grant 62272405,School and Locality Integration Development Project of Yantai City(2022)the Youth Innovation Science and Technology Support Program of Shandong Provincial under Grant 2021KJ080+2 种基金the Natural Science Foundation of Shandong Province,Grant ZR2022MF238Yantai Science and Technology Innovation Development Plan Project under Grant 2021YT06000645the Open Foundation of State key Laboratory of Networking and Switching Technology(Beijing University of Posts and Telecommunications)under Grant SKLNST-2022-1-12.
文摘With the rapid advancement of 5G technology,the Internet of Things(IoT)has entered a new phase of appli-cations and is rapidly becoming a significant force in promoting economic development.Due to the vast amounts of data created by numerous 5G IoT devices,the Ethereum platform has become a tool for the storage and sharing of IoT device data,thanks to its open and tamper-resistant characteristics.So,Ethereum account security is necessary for the Internet of Things to grow quickly and improve people's lives.By modeling Ethereum trans-action records as a transaction network,the account types are well identified by the Ethereum account classifi-cation system established based on Graph Neural Networks(GNNs).This work first investigates the Ethereum transaction network.Surprisingly,experimental metrics reveal that the Ethereum transaction network is neither optimal nor even satisfactory in terms of accurately representing transactions per account.This flaw may significantly impede the classification capability of GNNs,which is mostly governed by their attributes.This work proposes an Adaptive Multi-channel Bayesian Graph Attention Network(AMBGAT)for Ethereum account clas-sification to address this difficulty.AMBGAT uses attention to enhance node features,estimate graph topology that conforms to the ground truth,and efficiently extract node features pertinent to downstream tasks.An extensive experiment with actual Ethereum transaction data demonstrates that AMBGAT obtains competitive performance in the classification of Ethereum accounts while accurately estimating the graph topology.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2022JKF02039).
文摘Graph Neural Networks(GNNs)play a significant role in tasks related to homophilic graphs.Traditional GNNs,based on the assumption of homophily,employ low-pass filters for neighboring nodes to achieve information aggregation and embedding.However,in heterophilic graphs,nodes from different categories often establish connections,while nodes of the same category are located further apart in the graph topology.This characteristic poses challenges to traditional GNNs,leading to issues of“distant node modeling deficiency”and“failure of the homophily assumption”.In response,this paper introduces the Spatial-Frequency domain Adaptive Heterophilic Graph Neural Networks(SFA-HGNN),which integrates adaptive embedding mechanisms for both spatial and frequency domains to address the aforementioned issues.Specifically,for the first problem,we propose the“Distant Spatial Embedding Module”,aiming to select and aggregate distant nodes through high-order randomwalk transition probabilities to enhance modeling capabilities.For the second issue,we design the“Proximal Frequency Domain Embedding Module”,constructing adaptive filters to separate high and low-frequency signals of nodes,and introduce frequency-domain guided attention mechanisms to fuse the relevant information,thereby reducing the noise introduced by the failure of the homophily assumption.We deploy the SFA-HGNN on six publicly available heterophilic networks,achieving state-of-the-art results in four of them.Furthermore,we elaborate on the hyperparameter selection mechanism and validate the performance of each module through experimentation,demonstrating a positive correlation between“node structural similarity”,“node attribute vector similarity”,and“node homophily”in heterophilic networks.
文摘Various graph representation learning models convert graph nodes into vectors using techniques like matrix factorization,random walk,and deep learning.However,choosing the right method for different tasks can be challenging.Communities within networks help reveal underlying structures and correlations.Investigating how different models preserve community properties is crucial for identifying the best graph representation for data analysis.This paper defines indicators to explore the perceptual quality of community properties in representation learning spaces,including the consistency of community structure,node distribution within and between communities,and central node distribution.A visualization system presents these indicators,allowing users to evaluate models based on community structures.Case studies demonstrate the effectiveness of the indicators for the visual evaluation of graph representation learning models.
基金supported by the National Natural Science Foundation of China under grants U19B2044National Key Research and Development Program of China(2021YFC3300500).
文摘Accurate prediction of future events brings great benefits and reduces losses for society in many domains,such as civil unrest,pandemics,and crimes.Knowledge graph is a general language for describing and modeling complex systems.Different types of events continually occur,which are often related to historical and concurrent events.In this paper,we formalize the future event prediction as a temporal knowledge graph reasoning problem.Most existing studies either conduct reasoning on static knowledge graphs or assume knowledges graphs of all timestamps are available during the training process.As a result,they cannot effectively reason over temporal knowledge graphs and predict events happening in the future.To address this problem,some recent works learn to infer future events based on historical eventbased temporal knowledge graphs.However,these methods do not comprehensively consider the latent patterns and influences behind historical events and concurrent events simultaneously.This paper proposes a new graph representation learning model,namely Recurrent Event Graph ATtention Network(RE-GAT),based on a novel historical and concurrent events attention-aware mechanism by modeling the event knowledge graph sequence recurrently.More specifically,our RE-GAT uses an attention-based historical events embedding module to encode past events,and employs an attention-based concurrent events embedding module to model the associations of events at the same timestamp.A translation-based decoder module and a learning objective are developed to optimize the embeddings of entities and relations.We evaluate our proposed method on four benchmark datasets.Extensive experimental results demonstrate the superiority of our RE-GAT model comparing to various base-lines,which proves that our method can more accurately predict what events are going to happen.
基金supported by the National Natural Science Foundation of China under Grant No.62272332the Major Program of the Natural Science Foundation of Jiangsu Higher Education Institutions of China under Grant No.22KJA520006.
文摘Inductive knowledge graph embedding(KGE)aims to embed unseen entities in emerging knowledge graphs(KGs).The major recent studies of inductive KGE embed unseen entities by aggregating information from their neighboring entities and relations with graph neural networks(GNNs).However,these methods rely on the existing neighbors of unseen entities and suffer from two common problems:data sparsity and feature smoothing.Firstly,the data sparsity problem means unseen entities usually emerge with few triplets containing insufficient information.Secondly,the effectiveness of the features extracted from original KGs will degrade when repeatedly propagating these features to represent unseen entities in emerging KGs,which is termed feature smoothing problem.To tackle the two problems,we propose a novel model entitled Meta-Learning Based Memory Graph Convolutional Network(MMGCN)consisting of three different components:1)the two-layer information transforming module(TITM)developed to effectively transform information from original KGs to emerging KGs;2)the hyper-relation feature initializing module(HFIM)proposed to extract type-level features shared between KGs and obtain a coarse-grained representation for each entity with these features;and 3)the meta-learning training module(MTM)designed to simulate the few-shot emerging KGs and train the model in a meta-learning framework.The extensive experiments conducted on the few-shot link prediction task for emerging KGs demonstrate the superiority of our proposed model MMGCN compared with state-of-the-art methods.
基金supported by the National Key Research and Development Program of China(No.2021YFB3300503)Regional Innovation and Development Joint Fund of National Natural Science Foundation of China(No.U22A20167)National Natural Science Foundation of China(No.61872260).
文摘Recently,self-supervised learning has shown great potential in Graph Neural Networks (GNNs) through contrastive learning,which aims to learn discriminative features for each node without label information. The key to graph contrastive learning is data augmentation. The anchor node regards its augmented samples as positive samples,and the rest of the samples are regarded as negative samples,some of which may be positive samples. We call these mislabeled samples as “false negative” samples,which will seriously affect the final learning effect. Since such semantically similar samples are ubiquitous in the graph,the problem of false negative samples is very significant. To address this issue,the paper proposes a novel model,False negative sample Detection for Graph Contrastive Learning (FD4GCL),which uses attribute and structure-aware to detect false negative samples. Experimental results on seven datasets show that FD4GCL outperforms the state-of-the-art baselines and even exceeds several supervised methods.
基金Project supported in part by the National Natural Sci-ence Foundation of China(No.72192823)the“Ten Thousand Talents Program”of Zhejiang Province for Leading Experts(No.2021R52001)the Cooperation Project of MYbank,Ant Group。
文摘Financing needs exploration(FNE),which exploresfinancially constrained small-and medium-sized enterprises(SMEs),has become increasingly important in industry forfinancial institutions to facilitate SMEs’development.In this paper,wefirst perform an insightful exploratory analysis to exploit the transfer phenomenon offinancing needs among SMEs,which motivates us to fully exploit the multi-relation enterprise social network for boosting the effectiveness of FNE.The main challenge lies in modeling two kinds of heterogeneity,i.e.,transfer heterogeneity and SMEs’behavior heterogeneity,under different relation types simultaneously.To address these challenges,we propose a graph neural network named Multi-relation tRanslatIonal GrapH a Ttention network(M-RIGHT),which not only models the transfer heterogeneity offinancing needs along different relation types based on a novel entity–relation composition operator but also enables heterogeneous SMEs’representations based on a translation mechanism on relational hyperplanes to distinguish SMEs’heterogeneous behaviors under different relation types.Extensive experiments on two large-scale real-world datasets demonstrate M-RIGHT’s superiority over the state-of-the-art methods in the FNE task.
基金the National Key R&D Program of China(No.2021YFF1201200)the National Natural Science Foundation of China(Grant Nos.61972174 and 62172187)+1 种基金the Science and Technology Planning Project of Jilin Province(No.20220201145GX,No.20200708112YY and No.20220601112FG)the Science and Technology Planning Project of Guangdong Province(No.2020A0505100018),Guangdong Universities’Innovation Team Project(No.2021KCXTD015)and Guangdong Key Disciplines Project(No.2021ZDJS138)。
文摘Prenatal depression,which can affect pregnant women’s physical and psychological health and cause postpartum depression,is increasing dramatically.Therefore,it is essential to detect prenatal depression early and conduct an attribution analysis.Many studies have used questionnaires to screen for prenatal depression,but the existing methods lack attributability.To diagnose the early signs of prenatal depression and identify the key factors that may lead to prenatal depression from questionnaires,we present the semantically enhanced option embedding(SEOE)model to represent questionnaire options.It can quantitatively determine the relationship and patterns between options and depression.SEOE first quantifies options and resorts them,gathering options with little difference,since Word2Vec is highly dependent on context.The resort task is transformed into an optimization problem involving the traveling salesman problem.Moreover,all questionnaire samples are used to train the options’vector using Word2Vec.Finally,an LSTM and GRU fused model incorporating the cycle learning rate is constructed to detect whether a pregnant woman is suffering from depression.To verify the model,we compare it with other deep learning and traditional machine learning methods.The experiment results show that our proposed model can accurately identify pregnant women with depression and reach an F1 score of 0.8.The most relevant factors of depression found by SEOE are also verified in the literature.In addition,our model is of low computational complexity and strong generalization,which can be widely applied to other questionnaire analyses of psychiatric disorders.
基金supported by the Research Grants Council of Hong Kong(17308321)the HKUTCL Joint Research Center for Artificial Intelligence sponsored by TCL Corporate Research(Hong Kong).
文摘Heterogeneous information networks(HINs)have been extensively applied to real-world tasks,such as recommendation systems,social networks,and citation networks.While existing HIN representation learning methods can effectively learn the semantic and structural features in the network,little awareness was given to the distribution discrepancy of subgraphs within a single HIN.However,we find that ignoring such distribution discrepancy among subgraphs from multiple sources would hinder the effectiveness of graph embedding learning algorithms.This motivates us to propose SUMSHINE(Scalable Unsupervised Multi-Source Heterogeneous Information Network Embedding)-a scalable unsupervised framework to align the embedding distributions among multiple sources of an HiN.Experimental results on real-world datasets in a variety of downstream tasks validate the performance of our method over the state-of-the-art heterogeneous information network embedding algorithms.