Accurate and timely fault diagnosis is of great significance for the safe operation and power supply reliability of distribution systems.However,traditional intelligent methods limit the use of the physical structures...Accurate and timely fault diagnosis is of great significance for the safe operation and power supply reliability of distribution systems.However,traditional intelligent methods limit the use of the physical structures and data information of power networks.To this end,this study proposes a fault diagnostic model for distribution systems based on deep graph learning.This model considers the physical structure of the power network as a significant constraint during model training,which endows the model with stronger information perception to resist abnormal data input and unknown application conditions.In addition,a special spatiotemporal convolutional block is utilized to enhance the waveform feature extraction ability.This enables the proposed fault diagnostic model to be more effective in dealing with both fault waveform changes and the spatial effects of faults.In addition,a multi-task learning framework is constructed for fault location and fault type analysis,which improves the performance and generalization ability of the model.The IEEE 33-bus and IEEE 37-bus test systems are modeled to verify the effectiveness of the proposed fault diagnostic model.Finally,different fault conditions,topological changes,and interference factors are considered to evaluate the anti-interference and generalization performance of the proposed model.Experimental results demonstrate that the proposed model outperforms other state-of-the-art methods.展开更多
Image-text retrieval aims to capture the semantic correspondence between images and texts,which serves as a foundation and crucial component in multi-modal recommendations,search systems,and online shopping.Existing m...Image-text retrieval aims to capture the semantic correspondence between images and texts,which serves as a foundation and crucial component in multi-modal recommendations,search systems,and online shopping.Existing mainstream methods primarily focus on modeling the association of image-text pairs while neglecting the advantageous impact of multi-task learning on image-text retrieval.To this end,a multi-task visual semantic embedding network(MVSEN)is proposed for image-text retrieval.Specifically,we design two auxiliary tasks,including text-text matching and multi-label classification,for semantic constraints to improve the generalization and robustness of visual semantic embedding from a training perspective.Besides,we present an intra-and inter-modality interaction scheme to learn discriminative visual and textual feature representations by facilitating information flow within and between modalities.Subsequently,we utilize multi-layer graph convolutional networks in a cascading manner to infer the correlation of image-text pairs.Experimental results show that MVSEN outperforms state-of-the-art methods on two publicly available datasets,Flickr30K and MSCOCO,with rSum improvements of 8.2%and 3.0%,respectively.展开更多
This paper proposed a novel multi-view interactive behavior recognition method based on local self-similarity descriptors and graph shared multi-task learning. First, we proposed the composite interactive feature repr...This paper proposed a novel multi-view interactive behavior recognition method based on local self-similarity descriptors and graph shared multi-task learning. First, we proposed the composite interactive feature representation which encodes both the spatial distribution of local motion of interest points and their contexts. Furthermore, local self-similarity descriptor represented by temporal-pyramid bag of words(BOW) was applied to decreasing the influence of observation angle change on recognition and retaining the temporal information. For the purpose of exploring latent correlation between different interactive behaviors from different views and retaining specific information of each behaviors, graph shared multi-task learning was used to learn the corresponding interactive behavior recognition model. Experiment results showed the effectiveness of the proposed method in comparison with other state-of-the-art methods on the public databases CASIA, i3Dpose dataset and self-built database for interactive behavior recognition.展开更多
The increasing share of renewable energy in the electricity grid and progressing changes in power consumption have led to fluctuating,and weather-dependent power flows.To ensure grid stability,grid operators rely on p...The increasing share of renewable energy in the electricity grid and progressing changes in power consumption have led to fluctuating,and weather-dependent power flows.To ensure grid stability,grid operators rely on power forecasts which are crucial for grid calculations and planning.In this paper,a Multi-Task Learning approach is combined with a Graph Neural Network(GNN)to predict vertical power flows at transformers connecting high and extra-high voltage levels.The proposed method accounts for local differences in power flow characteristics by using an Embedding Multi-Task Learning approach.The use of a Bayesian embedding to capture the latent node characteristics allows to share the weights across all transformers in the subsequent node-invariant GNN while still allowing the individual behavioral patterns of the transformers to be distinguished.At the same time,dependencies between transformers are considered by the GNN architecture which can learn relationships between different transformers and thus take into account that power flows in an electricity network are not independent from each other.The effectiveness of the proposed method is demonstrated through evaluation on two real-world data sets provided by two of four German Transmission System Operators,comprising large portions of the operated German transmission grid.The results show that the proposed Multi-Task Graph Neural Network is a suitable representation learner for electricity networks with a clear advantage provided by the preceding embedding layer.It is able to capture interconnections between correlated transformers and indeed improves the performance in power flow prediction compared to standard Neural Networks.A sign test shows that the proposed model reduces the test RMSE on both data sets compared to the benchmark models significantly.展开更多
基金supported by National Natural Science Foundation of China(No.52277083)。
文摘Accurate and timely fault diagnosis is of great significance for the safe operation and power supply reliability of distribution systems.However,traditional intelligent methods limit the use of the physical structures and data information of power networks.To this end,this study proposes a fault diagnostic model for distribution systems based on deep graph learning.This model considers the physical structure of the power network as a significant constraint during model training,which endows the model with stronger information perception to resist abnormal data input and unknown application conditions.In addition,a special spatiotemporal convolutional block is utilized to enhance the waveform feature extraction ability.This enables the proposed fault diagnostic model to be more effective in dealing with both fault waveform changes and the spatial effects of faults.In addition,a multi-task learning framework is constructed for fault location and fault type analysis,which improves the performance and generalization ability of the model.The IEEE 33-bus and IEEE 37-bus test systems are modeled to verify the effectiveness of the proposed fault diagnostic model.Finally,different fault conditions,topological changes,and interference factors are considered to evaluate the anti-interference and generalization performance of the proposed model.Experimental results demonstrate that the proposed model outperforms other state-of-the-art methods.
基金supported by the National Natural Science Foundation of China under Grant No.62076048.
文摘Image-text retrieval aims to capture the semantic correspondence between images and texts,which serves as a foundation and crucial component in multi-modal recommendations,search systems,and online shopping.Existing mainstream methods primarily focus on modeling the association of image-text pairs while neglecting the advantageous impact of multi-task learning on image-text retrieval.To this end,a multi-task visual semantic embedding network(MVSEN)is proposed for image-text retrieval.Specifically,we design two auxiliary tasks,including text-text matching and multi-label classification,for semantic constraints to improve the generalization and robustness of visual semantic embedding from a training perspective.Besides,we present an intra-and inter-modality interaction scheme to learn discriminative visual and textual feature representations by facilitating information flow within and between modalities.Subsequently,we utilize multi-layer graph convolutional networks in a cascading manner to infer the correlation of image-text pairs.Experimental results show that MVSEN outperforms state-of-the-art methods on two publicly available datasets,Flickr30K and MSCOCO,with rSum improvements of 8.2%and 3.0%,respectively.
基金Project(51678075)supported by the National Natural Science Foundation of ChinaProject(2017GK2271)supported by Hunan Provincial Science and Technology Department,China
文摘This paper proposed a novel multi-view interactive behavior recognition method based on local self-similarity descriptors and graph shared multi-task learning. First, we proposed the composite interactive feature representation which encodes both the spatial distribution of local motion of interest points and their contexts. Furthermore, local self-similarity descriptor represented by temporal-pyramid bag of words(BOW) was applied to decreasing the influence of observation angle change on recognition and retaining the temporal information. For the purpose of exploring latent correlation between different interactive behaviors from different views and retaining specific information of each behaviors, graph shared multi-task learning was used to learn the corresponding interactive behavior recognition model. Experiment results showed the effectiveness of the proposed method in comparison with other state-of-the-art methods on the public databases CASIA, i3Dpose dataset and self-built database for interactive behavior recognition.
文摘The increasing share of renewable energy in the electricity grid and progressing changes in power consumption have led to fluctuating,and weather-dependent power flows.To ensure grid stability,grid operators rely on power forecasts which are crucial for grid calculations and planning.In this paper,a Multi-Task Learning approach is combined with a Graph Neural Network(GNN)to predict vertical power flows at transformers connecting high and extra-high voltage levels.The proposed method accounts for local differences in power flow characteristics by using an Embedding Multi-Task Learning approach.The use of a Bayesian embedding to capture the latent node characteristics allows to share the weights across all transformers in the subsequent node-invariant GNN while still allowing the individual behavioral patterns of the transformers to be distinguished.At the same time,dependencies between transformers are considered by the GNN architecture which can learn relationships between different transformers and thus take into account that power flows in an electricity network are not independent from each other.The effectiveness of the proposed method is demonstrated through evaluation on two real-world data sets provided by two of four German Transmission System Operators,comprising large portions of the operated German transmission grid.The results show that the proposed Multi-Task Graph Neural Network is a suitable representation learner for electricity networks with a clear advantage provided by the preceding embedding layer.It is able to capture interconnections between correlated transformers and indeed improves the performance in power flow prediction compared to standard Neural Networks.A sign test shows that the proposed model reduces the test RMSE on both data sets compared to the benchmark models significantly.