Active learning in semi-supervised classification involves introducing additional labels for unlabelled data to improve the accuracy of the underlying classifier.A challenge is to identify which points to label to bes...Active learning in semi-supervised classification involves introducing additional labels for unlabelled data to improve the accuracy of the underlying classifier.A challenge is to identify which points to label to best improve performance while limiting the number of new labels."Model Change"active learning quantifies the resulting change incurred in the classifier by introducing the additional label(s).We pair this idea with graph-based semi-supervised learning(SSL)methods,that use the spectrum of the graph Laplacian matrix,which can be truncated to avoid prohibitively large computational and storage costs.We consider a family of convex loss functions for which the acquisition function can be efficiently approximated using the Laplace approximation of the posterior distribution.We show a variety of multiclass examples that illustrate improved performance over prior state-of-art.展开更多
With the successive application of deep learning(DL)in classification tasks,the DL-based modulation classification method has become the preference for its state-of-the-art performance.Nevertheless,once the DL recogni...With the successive application of deep learning(DL)in classification tasks,the DL-based modulation classification method has become the preference for its state-of-the-art performance.Nevertheless,once the DL recognition model is pre-trained with fixed classes,the pre-trained model tends to predict incorrect results when identifying incremental classes.Moreover,the incremental classes are usually emergent without label information or only a few labeled samples of incremental classes can be obtained.In this context,we propose a graphbased semi-supervised approach to address the fewshot classes-incremental(FSCI)modulation classification problem.Our proposed method is a twostage learning method,specifically,a warm-up model is trained for classifying old classes and incremental classes,where the unlabeled samples of incremental classes are uniformly labeled with the same label to alleviate the damage of the class imbalance problem.Then the warm-up model is regarded as a feature extractor for constructing a similar graph to connect labeled samples and unlabeled samples,and the label propagation algorithm is adopted to propagate the label information from labeled nodes to unlabeled nodes in the graph to achieve the purpose of incremental classes recognition.Simulation results prove that the proposed method is superior to other finetuning methods and retrain methods.展开更多
With the rapid development of Internet of Things(IoT)technology,IoT systems have been widely applied in health-care,transportation,home,and other fields.However,with the continuous expansion of the scale and increasin...With the rapid development of Internet of Things(IoT)technology,IoT systems have been widely applied in health-care,transportation,home,and other fields.However,with the continuous expansion of the scale and increasing complexity of IoT systems,the stability and security issues of IoT systems have become increasingly prominent.Thus,it is crucial to detect anomalies in the collected IoT time series from various sensors.Recently,deep learning models have been leveraged for IoT anomaly detection.However,owing to the challenges associated with data labeling,most IoT anomaly detection methods resort to unsupervised learning techniques.Nevertheless,the absence of accurate abnormal information in unsupervised learning methods limits their performance.To address these problems,we propose AS-GCN-MTM,an adaptive structural Graph Convolutional Networks(GCN)-based framework using a mean-teacher mechanism(AS-GCN-MTM)for anomaly identification.It performs better than unsupervised methods using only a small amount of labeled data.Mean Teachers is an effective semi-supervised learning method that utilizes unlabeled data for training to improve the generalization ability and performance of the model.However,the dependencies between data are often unknown in time series data.To solve this problem,we designed a graph structure adaptive learning layer based on neural networks,which can automatically learn the graph structure from time series data.It not only better captures the relationships between nodes but also enhances the model’s performance by augmenting key data.Experiments have demonstrated that our method improves the baseline model with the highest F1 value by 10.4%,36.1%,and 5.6%,respectively,on three real datasets with a 10%data labeling rate.展开更多
The aim of this paper is to broaden the application of Stochastic Configuration Network (SCN) in the semi-supervised domain by utilizing common unlabeled data in daily life. It can enhance the classification accuracy ...The aim of this paper is to broaden the application of Stochastic Configuration Network (SCN) in the semi-supervised domain by utilizing common unlabeled data in daily life. It can enhance the classification accuracy of decentralized SCN algorithms while effectively protecting user privacy. To this end, we propose a decentralized semi-supervised learning algorithm for SCN, called DMT-SCN, which introduces teacher and student models by combining the idea of consistency regularization to improve the response speed of model iterations. In order to reduce the possible negative impact of unsupervised data on the model, we purposely change the way of adding noise to the unlabeled data. Simulation results show that the algorithm can effectively utilize unlabeled data to improve the classification accuracy of SCN training and is robust under different ground simulation environments.展开更多
The recent years have witnessed a surge of interests in graph-based semi-supervised learning(GBSSL).In this paper,we will introduce a series of works done by our group on this topic including:1)a method called linear ...The recent years have witnessed a surge of interests in graph-based semi-supervised learning(GBSSL).In this paper,we will introduce a series of works done by our group on this topic including:1)a method called linear neighborhood propagation(LNP)which can automatically construct the optimal graph;2)a novel multilevel scheme to make our algorithm scalable for large data sets;3)a generalized point charge scheme for GBSSL;4)a multilabel GBSSL method by solving a Sylvester equation;5)an information fusion framework for GBSSL;and 6)an application of GBSSL on fMRI image segmentation.展开更多
Intrusion detection involves identifying unauthorized network activity and recognizing whether the data constitute an abnormal network transmission.Recent research has focused on using semi-supervised learning mechani...Intrusion detection involves identifying unauthorized network activity and recognizing whether the data constitute an abnormal network transmission.Recent research has focused on using semi-supervised learning mechanisms to identify abnormal network traffic to deal with labeled and unlabeled data in the industry.However,real-time training and classifying network traffic pose challenges,as they can lead to the degradation of the overall dataset and difficulties preventing attacks.Additionally,existing semi-supervised learning research might need to analyze the experimental results comprehensively.This paper proposes XA-GANomaly,a novel technique for explainable adaptive semi-supervised learning using GANomaly,an image anomalous detection model that dynamically trains small subsets to these issues.First,this research introduces a deep neural network(DNN)-based GANomaly for semi-supervised learning.Second,this paper presents the proposed adaptive algorithm for the DNN-based GANomaly,which is validated with four subsets of the adaptive dataset.Finally,this study demonstrates a monitoring system that incorporates three explainable techniques—Shapley additive explanations,reconstruction error visualization,and t-distributed stochastic neighbor embedding—to respond effectively to attacks on traffic data at each feature engineering stage,semi-supervised learning,and adaptive learning.Compared to other single-class classification techniques,the proposed DNN-based GANomaly achieves higher scores for Network Security Laboratory-Knowledge Discovery in Databases and UNSW-NB15 datasets at 13%and 8%of F1 scores and 4.17%and 11.51%for accuracy,respectively.Furthermore,experiments of the proposed adaptive learning reveal mostly improved results over the initial values.An analysis and monitoring system based on the combination of the three explainable methodologies is also described.Thus,the proposed method has the potential advantages to be applied in practical industry,and future research will explore handling unbalanced real-time datasets in various scenarios.展开更多
Radio frequency fingerprinting(RFF)is a remarkable lightweight authentication scheme to support rapid and scalable identification in the internet of things(IoT)systems.Deep learning(DL)is a critical enabler of RFF ide...Radio frequency fingerprinting(RFF)is a remarkable lightweight authentication scheme to support rapid and scalable identification in the internet of things(IoT)systems.Deep learning(DL)is a critical enabler of RFF identification by leveraging the hardware-level features.However,traditional supervised learning methods require huge labeled training samples.Therefore,how to establish a highperformance supervised learning model with few labels under practical application is still challenging.To address this issue,we in this paper propose a novel RFF semi-supervised learning(RFFSSL)model which can obtain a better performance with few meta labels.Specifically,the proposed RFFSSL model is constituted by a teacher-student network,in which the student network learns from the pseudo label predicted by the teacher.Then,the output of the student model will be exploited to improve the performance of teacher among the labeled data.Furthermore,a comprehensive evaluation on the accuracy is conducted.We derive about 50 GB real long-term evolution(LTE)mobile phone’s raw signal datasets,which is used to evaluate various models.Experimental results demonstrate that the proposed RFFSSL scheme can achieve up to 97%experimental testing accuracy over a noisy environment only with 10%labeled samples when training samples equal to 2700.展开更多
In the upcoming large-scale Internet of Things(Io T),it is increasingly challenging to defend against malicious traffic,due to the heterogeneity of Io T devices and the diversity of Io T communication protocols.In thi...In the upcoming large-scale Internet of Things(Io T),it is increasingly challenging to defend against malicious traffic,due to the heterogeneity of Io T devices and the diversity of Io T communication protocols.In this paper,we propose a semi-supervised learning-based approach to detect malicious traffic at the access side.It overcomes the resource-bottleneck problem of traditional malicious traffic defenders which are deployed at the victim side,and also is free of labeled traffic data in model training.Specifically,we design a coarse-grained behavior model of Io T devices by self-supervised learning with unlabeled traffic data.Then,we fine-tune this model to improve its accuracy in malicious traffic detection by adopting a transfer learning method using a small amount of labeled data.Experimental results show that our method can achieve the accuracy of 99.52%and the F1-score of 99.52%with only 1%of the labeled training data based on the CICDDoS2019 dataset.Moreover,our method outperforms the stateof-the-art supervised learning-based methods in terms of accuracy,precision,recall and F1-score with 1%of the training data.展开更多
Through semi-supervised learning and knowledge inheritance,a novel Takagi-Sugeno-Kang(TSK)fuzzy system framework is proposed for epilepsy data classification in this study.The new method is based on the maximum mean d...Through semi-supervised learning and knowledge inheritance,a novel Takagi-Sugeno-Kang(TSK)fuzzy system framework is proposed for epilepsy data classification in this study.The new method is based on the maximum mean discrepancy(MMD)method and TSK fuzzy system,as a basic model for the classification of epilepsy data.First,formedical data,the interpretability of TSK fuzzy systems can ensure that the prediction results are traceable and safe.Second,in view of the deviation in the data distribution between the real source domain and the target domain,MMD is used to measure the distance between different data distributions.The objective function is constructed according to the MMD distance,and the distribution distance of different datasets is minimized to find the similar characteristics of different datasets.We introduce semi-supervised learning to further explore the relationship between data.Based on the MMD method,a semi-supervised learning(SSL)-MMD method is constructed by using pseudo-tags to realize the data distribution alignment of the same category.In addition,the idea of knowledge dissemination is used to learn pseudo-tags as additional data features.Finally,for epilepsy classification,the cross-domain TSK fuzzy system uses the cross-entropy function as the objective function and adopts the back-propagation strategy to optimize the parameters.The experimental results show that the new method can process complex epilepsy data and identify whether patients have epilepsy.展开更多
Malaria is a lethal disease responsible for thousands of deaths worldwide every year.Manual methods of malaria diagnosis are timeconsuming that require a great deal of human expertise and efforts.Computerbased automat...Malaria is a lethal disease responsible for thousands of deaths worldwide every year.Manual methods of malaria diagnosis are timeconsuming that require a great deal of human expertise and efforts.Computerbased automated diagnosis of diseases is progressively becoming popular.Although deep learning models show high performance in the medical field,it demands a large volume of data for training which is hard to acquire for medical problems.Similarly,labeling of medical images can be done with the help of medical experts only.Several recent studies have utilized deep learning models to develop efficient malaria diagnostic system,which showed promising results.However,the most common problem with these models is that they need a large amount of data for training.This paper presents a computer-aided malaria diagnosis system that combines a semi-supervised generative adversarial network and transfer learning.The proposed model is trained in a semi-supervised manner and requires less training data than conventional deep learning models.Performance of the proposed model is evaluated on a publicly available dataset of blood smear images(with malariainfected and normal class)and achieved a classification accuracy of 96.6%.展开更多
The number of botnet malware attacks on Internet devices has grown at an equivalent rate to the number of Internet devices that are connected to the Internet.Bot detection using machine learning(ML)with flow-based fea...The number of botnet malware attacks on Internet devices has grown at an equivalent rate to the number of Internet devices that are connected to the Internet.Bot detection using machine learning(ML)with flow-based features has been extensively studied in the literature.Existing flow-based detection methods involve significant computational overhead that does not completely capture network communication patterns that might reveal other features ofmalicious hosts.Recently,Graph-Based Bot Detection methods using ML have gained attention to overcome these limitations,as graphs provide a real representation of network communications.The purpose of this study is to build a botnet malware detection system utilizing centrality measures for graph-based botnet detection and ML.We propose BotSward,a graph-based bot detection system that is based on ML.We apply the efficient centrality measures,which are Closeness Centrality(CC),Degree Centrality(CC),and PageRank(PR),and compare them with others used in the state-of-the-art.The efficiency of the proposed method is verified on the available Czech Technical University 13 dataset(CTU-13).The CTU-13 dataset contains 13 real botnet traffic scenarios that are connected to a command-and-control(C&C)channel and that cause malicious actions such as phishing,distributed denial-of-service(DDoS)attacks,spam attacks,etc.BotSward is robust to zero-day attacks,suitable for large-scale datasets,and is intended to produce better accuracy than state-of-the-art techniques.The proposed BotSward solution achieved 99%accuracy in botnet attack detection with a false positive rate as low as 0.0001%.展开更多
Recent state-of-the-art semi-supervised learning(SSL)methods usually use data augmentations as core components.Such methods,however,are limited to simple transformations such as the augmentations under the instance’s...Recent state-of-the-art semi-supervised learning(SSL)methods usually use data augmentations as core components.Such methods,however,are limited to simple transformations such as the augmentations under the instance’s naive representations or the augmentations under the instance’s semantic representations.To tackle this problem,we offer a unique insight into data augmentations and propose a novel data-augmentation-based semi-supervised learning method,called Attentive Neighborhood Feature Aug-mentation(ANFA).The motivation of our method lies in the observation that the relationship between the given feature and its neighborhood may contribute to constructing more reliable transformations for the data,and further facilitating the classifier to distinguish the ambiguous features from the low-dense regions.Specially,we first project the labeled and unlabeled data points into an embedding space and then construct a neighbor graph that serves as a similarity measure based on the similar representations in the embedding space.Then,we employ an attention mechanism to transform the target features into augmented ones based on the neighbor graph.Finally,we formulate a novel semi-supervised loss by encouraging the predictions of the interpolations of augmented features to be consistent with the corresponding interpolations of the predictions of the target features.We carried out exper-iments on SVHN and CIFAR-10 benchmark datasets and the experimental results demonstrate that our method outperforms the state-of-the-art methods when the number of labeled examples is limited.展开更多
This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy ...This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits.展开更多
Online review platforms are becoming increasingly popular,encouraging dishonest merchants and service providers to deceive customers by creating fake reviews for their goods or services.Using Sybil accounts,bot farms,...Online review platforms are becoming increasingly popular,encouraging dishonest merchants and service providers to deceive customers by creating fake reviews for their goods or services.Using Sybil accounts,bot farms,and real account purchases,immoral actors demonize rivals and advertise their goods.Most academic and industry efforts have been aimed at detecting fake/fraudulent product or service evaluations for years.The primary hurdle to identifying fraudulent reviews is the lack of a reliable means to distinguish fraudulent reviews from real ones.This paper adopts a semi-supervised machine learning method to detect fake reviews on any website,among other things.Online reviews are classified using a semi-supervised approach(PU-learning)since there is a shortage of labeled data,and they are dynamic.Then,classification is performed using the machine learning techniques Support Vector Machine(SVM)and Nave Bayes.The performance of the suggested system has been compared with standard works,and experimental findings are assessed using several assessment metrics.展开更多
Deep Learning(DL)is such a powerful tool that we have seen tremendous success in areas such as Computer Vision,Speech Recognition,and Natural Language Processing.Since Automated Modulation Classification(AMC)is an imp...Deep Learning(DL)is such a powerful tool that we have seen tremendous success in areas such as Computer Vision,Speech Recognition,and Natural Language Processing.Since Automated Modulation Classification(AMC)is an important part in Cognitive Radio Networks,we try to explore its potential in solving signal modulation recognition problem.It cannot be overlooked that DL model is a complex model,thus making them prone to over-fitting.DL model requires many training data to combat with over-fitting,but adding high quality labels to training data manually is not always cheap and accessible,especially in real-time system,which may counter unprecedented data in dataset.Semi-supervised Learning is a way to exploit unlabeled data effectively to reduce over-fitting in DL.In this paper,we extend Generative Adversarial Networks(GANs)to the semi-supervised learning will show it is a method can be used to create a more dataefficient classifier.展开更多
The majority of big data analytics applied to transportation datasets suffer from being too domain-specific,that is,they draw conclusions for a dataset based on analytics on the same dataset.This makes models trained ...The majority of big data analytics applied to transportation datasets suffer from being too domain-specific,that is,they draw conclusions for a dataset based on analytics on the same dataset.This makes models trained from one domain(e.g.taxi data)applies badly to a different domain(e.g.Uber data).To achieve accurate analyses on a new domain,substantial amounts of data must be available,which limits practical applications.To remedy this,we propose to use semi-supervised and active learning of big data to accomplish the domain adaptation task:Selectively choosing a small amount of datapoints from a new domain while achieving comparable performances to using all the datapoints.We choose the New York City(NYC)transportation data of taxi and Uber as our dataset,simulating different domains with 90%as the source data domain for training and the remaining 10%as the target data domain for evaluation.We propose semi-supervised and active learning strategies and apply it to the source domain for selecting datapoints.Experimental results show that our adaptation achieves a comparable performance of using all datapoints while using only a fraction of them,substantially reducing the amount of data required.Our approach has two major advantages:It can make accurate analytics and predictions when big datasets are not available,and even if big datasets are available,our approach chooses the most informative datapoints out of the dataset,making the process much more efficient without having to process huge amounts of data.展开更多
It is crucial to maintain the safe and stable operation of distribution transformers,which constitute a key part of power systems.In the event of transformer failure,the fault type must be diagnosed in a timely and ac...It is crucial to maintain the safe and stable operation of distribution transformers,which constitute a key part of power systems.In the event of transformer failure,the fault type must be diagnosed in a timely and accurate manner.To this end,a transformer fault diagnosis method based on infrared image processing and semi-supervised learning is proposed herein.First,we perform feature extraction on the collected infrared-image data to extract temperature,texture,and shape features as the model reference vectors.Then,a generative adversarial network(GAN)is constructed to generate synthetic samples for the minority subset of labelled samples.The proposed method can learn information from unlabeled sample data,unlike conventional supervised learning methods.Subsequently,a semi-supervised graph model is trained on the entire dataset,i.e.,both labeled and unlabeled data.Finally,we test the proposed model on an actual dataset collected from a Chinese electricity provider.The experimental results show that the use of feature extraction,sample generation,and semi-supervised learning model can improve the accuracy of transformer fault classification.This verifies the effectiveness of the proposed method.展开更多
Direct online measurement on product quality of industrial processes is difficult to be realized,which leads to a large number of unlabeled samples in modeling data.Therefore,it needs to employ semi-supervised learnin...Direct online measurement on product quality of industrial processes is difficult to be realized,which leads to a large number of unlabeled samples in modeling data.Therefore,it needs to employ semi-supervised learning(SSL)method to establish the soft sensor model of product quality.Considering the slow time-varying characteristic of industrial processes,the model parameters should be updated smoothly.According to this characteristic,this paper proposes an online adaptive semi-supervised learning algorithm based on random vector functional link network(RVFLN),denoted as OAS-RVFLN.By introducing a L2-fusion term that can be seen a weight deviation constraint,the proposed algorithm unifies the offline and online learning,and achieves smoothness of model parameter update.Empirical evaluations both on benchmark testing functions and datasets reveal that the proposed OAS-RVFLN can outperform the conventional methods in learning speed and accuracy.Finally,the OAS-RVFLN is applied to the coal dense medium separation process in coal industry to estimate the ash content of coal product,which further verifies its effectiveness and potential of industrial application.展开更多
Artificial intelligent based dialog systems are getting attention from both business and academic communities.The key parts for such intelligent chatbot systems are domain classification,intent detection,and named ent...Artificial intelligent based dialog systems are getting attention from both business and academic communities.The key parts for such intelligent chatbot systems are domain classification,intent detection,and named entity recognition.Various supervised,unsupervised,and hybrid approaches are used to detect each field.Such intelligent systems,also called natural language understanding systems analyze user requests in sequential order:domain classification,intent,and entity recognition based on the semantic rules of the classified domain.This sequential approach propagates the downstream error;i.e.,if the domain classification model fails to classify the domain,intent and entity recognition fail.Furthermore,training such intelligent system necessitates a large number of user-annotated datasets for each domain.This study proposes a single joint predictive deep neural network framework based on long short-term memory using only a small user-annotated dataset to address these issues.It investigates value added by incorporating unlabeled data from user chatting logs into multi-domain spoken language understanding systems.Systematic experimental analysis of the proposed joint frameworks,along with the semi-supervised multi-domain model,using open-source annotated and unannotated utterances shows robust improvement in the predictive performance of the proposed multi-domain intelligent chatbot over a base joint model and joint model based on adversarial learning.展开更多
For the classification problem in practice,one of the challenging issues is to obtain enough labeled data for training.Moreover,even if such labeled data has been sufficiently accumulated,most datasets often exhibit l...For the classification problem in practice,one of the challenging issues is to obtain enough labeled data for training.Moreover,even if such labeled data has been sufficiently accumulated,most datasets often exhibit long-tailed distribution with heavy class imbalance,which results in a biased model towards a majority class.To alleviate such class imbalance,semisupervised learning methods using additional unlabeled data have been considered.However,as a matter of course,the accuracy is much lower than that from supervised learning.In this study,under the assumption that additional unlabeled data is available,we propose the iterative semi-supervised learning algorithms,which iteratively correct the labeling of the extra unlabeled data based on softmax probabilities.The results show that the proposed algorithms provide the accuracy as high as that from the supervised learning.To validate the proposed algorithms,we tested on the two scenarios:with the balanced unlabeled dataset and with the imbalanced unlabeled dataset.Under both scenarios,our proposed semi-supervised learning algorithms provided higher accuracy than previous state-of-the-arts.Code is available at https://github.com/HeewonChung92/iterative-semi-learning.展开更多
基金supported by the DOD National Defense Science and Engineering Graduate(NDSEG)Research Fellowshipsupported by the NGA under Contract No.HM04762110003.
文摘Active learning in semi-supervised classification involves introducing additional labels for unlabelled data to improve the accuracy of the underlying classifier.A challenge is to identify which points to label to best improve performance while limiting the number of new labels."Model Change"active learning quantifies the resulting change incurred in the classifier by introducing the additional label(s).We pair this idea with graph-based semi-supervised learning(SSL)methods,that use the spectrum of the graph Laplacian matrix,which can be truncated to avoid prohibitively large computational and storage costs.We consider a family of convex loss functions for which the acquisition function can be efficiently approximated using the Laplace approximation of the posterior distribution.We show a variety of multiclass examples that illustrate improved performance over prior state-of-art.
基金supported in part by the National Natural Science Foundation of China under Grant No.62171334,No.11973077 and No.12003061。
文摘With the successive application of deep learning(DL)in classification tasks,the DL-based modulation classification method has become the preference for its state-of-the-art performance.Nevertheless,once the DL recognition model is pre-trained with fixed classes,the pre-trained model tends to predict incorrect results when identifying incremental classes.Moreover,the incremental classes are usually emergent without label information or only a few labeled samples of incremental classes can be obtained.In this context,we propose a graphbased semi-supervised approach to address the fewshot classes-incremental(FSCI)modulation classification problem.Our proposed method is a twostage learning method,specifically,a warm-up model is trained for classifying old classes and incremental classes,where the unlabeled samples of incremental classes are uniformly labeled with the same label to alleviate the damage of the class imbalance problem.Then the warm-up model is regarded as a feature extractor for constructing a similar graph to connect labeled samples and unlabeled samples,and the label propagation algorithm is adopted to propagate the label information from labeled nodes to unlabeled nodes in the graph to achieve the purpose of incremental classes recognition.Simulation results prove that the proposed method is superior to other finetuning methods and retrain methods.
基金This research is partially supported by the National Natural Science Foundation of China under Grant No.62376043Science and Technology Program of Sichuan Province under Grant Nos.2020JDRC0067,2023JDRC0087,and 24NSFTD0025.
文摘With the rapid development of Internet of Things(IoT)technology,IoT systems have been widely applied in health-care,transportation,home,and other fields.However,with the continuous expansion of the scale and increasing complexity of IoT systems,the stability and security issues of IoT systems have become increasingly prominent.Thus,it is crucial to detect anomalies in the collected IoT time series from various sensors.Recently,deep learning models have been leveraged for IoT anomaly detection.However,owing to the challenges associated with data labeling,most IoT anomaly detection methods resort to unsupervised learning techniques.Nevertheless,the absence of accurate abnormal information in unsupervised learning methods limits their performance.To address these problems,we propose AS-GCN-MTM,an adaptive structural Graph Convolutional Networks(GCN)-based framework using a mean-teacher mechanism(AS-GCN-MTM)for anomaly identification.It performs better than unsupervised methods using only a small amount of labeled data.Mean Teachers is an effective semi-supervised learning method that utilizes unlabeled data for training to improve the generalization ability and performance of the model.However,the dependencies between data are often unknown in time series data.To solve this problem,we designed a graph structure adaptive learning layer based on neural networks,which can automatically learn the graph structure from time series data.It not only better captures the relationships between nodes but also enhances the model’s performance by augmenting key data.Experiments have demonstrated that our method improves the baseline model with the highest F1 value by 10.4%,36.1%,and 5.6%,respectively,on three real datasets with a 10%data labeling rate.
文摘The aim of this paper is to broaden the application of Stochastic Configuration Network (SCN) in the semi-supervised domain by utilizing common unlabeled data in daily life. It can enhance the classification accuracy of decentralized SCN algorithms while effectively protecting user privacy. To this end, we propose a decentralized semi-supervised learning algorithm for SCN, called DMT-SCN, which introduces teacher and student models by combining the idea of consistency regularization to improve the response speed of model iterations. In order to reduce the possible negative impact of unsupervised data on the model, we purposely change the way of adding noise to the unlabeled data. Simulation results show that the algorithm can effectively utilize unlabeled data to improve the classification accuracy of SCN training and is robust under different ground simulation environments.
基金supported by the National Natural Science Foundation of China(Grant Nos.60835002,61075004).
文摘The recent years have witnessed a surge of interests in graph-based semi-supervised learning(GBSSL).In this paper,we will introduce a series of works done by our group on this topic including:1)a method called linear neighborhood propagation(LNP)which can automatically construct the optimal graph;2)a novel multilevel scheme to make our algorithm scalable for large data sets;3)a generalized point charge scheme for GBSSL;4)a multilabel GBSSL method by solving a Sylvester equation;5)an information fusion framework for GBSSL;and 6)an application of GBSSL on fMRI image segmentation.
基金supported by Korea Institute for Advancement of Technology(KIAT)grant funded by theKoreaGovernment(MOTIE)(P0008703,The CompetencyDevelopment Program for Industry Specialist).
文摘Intrusion detection involves identifying unauthorized network activity and recognizing whether the data constitute an abnormal network transmission.Recent research has focused on using semi-supervised learning mechanisms to identify abnormal network traffic to deal with labeled and unlabeled data in the industry.However,real-time training and classifying network traffic pose challenges,as they can lead to the degradation of the overall dataset and difficulties preventing attacks.Additionally,existing semi-supervised learning research might need to analyze the experimental results comprehensively.This paper proposes XA-GANomaly,a novel technique for explainable adaptive semi-supervised learning using GANomaly,an image anomalous detection model that dynamically trains small subsets to these issues.First,this research introduces a deep neural network(DNN)-based GANomaly for semi-supervised learning.Second,this paper presents the proposed adaptive algorithm for the DNN-based GANomaly,which is validated with four subsets of the adaptive dataset.Finally,this study demonstrates a monitoring system that incorporates three explainable techniques—Shapley additive explanations,reconstruction error visualization,and t-distributed stochastic neighbor embedding—to respond effectively to attacks on traffic data at each feature engineering stage,semi-supervised learning,and adaptive learning.Compared to other single-class classification techniques,the proposed DNN-based GANomaly achieves higher scores for Network Security Laboratory-Knowledge Discovery in Databases and UNSW-NB15 datasets at 13%and 8%of F1 scores and 4.17%and 11.51%for accuracy,respectively.Furthermore,experiments of the proposed adaptive learning reveal mostly improved results over the initial values.An analysis and monitoring system based on the combination of the three explainable methodologies is also described.Thus,the proposed method has the potential advantages to be applied in practical industry,and future research will explore handling unbalanced real-time datasets in various scenarios.
基金supported by Innovation Talents Promotion Program of Shaanxi Province,China(No.2021TD08)。
文摘Radio frequency fingerprinting(RFF)is a remarkable lightweight authentication scheme to support rapid and scalable identification in the internet of things(IoT)systems.Deep learning(DL)is a critical enabler of RFF identification by leveraging the hardware-level features.However,traditional supervised learning methods require huge labeled training samples.Therefore,how to establish a highperformance supervised learning model with few labels under practical application is still challenging.To address this issue,we in this paper propose a novel RFF semi-supervised learning(RFFSSL)model which can obtain a better performance with few meta labels.Specifically,the proposed RFFSSL model is constituted by a teacher-student network,in which the student network learns from the pseudo label predicted by the teacher.Then,the output of the student model will be exploited to improve the performance of teacher among the labeled data.Furthermore,a comprehensive evaluation on the accuracy is conducted.We derive about 50 GB real long-term evolution(LTE)mobile phone’s raw signal datasets,which is used to evaluate various models.Experimental results demonstrate that the proposed RFFSSL scheme can achieve up to 97%experimental testing accuracy over a noisy environment only with 10%labeled samples when training samples equal to 2700.
基金supported in part by the National Key R&D Program of China under Grant 2018YFA0701601part by the National Natural Science Foundation of China(Grant No.U22A2002,61941104,62201605)part by Tsinghua University-China Mobile Communications Group Co.,Ltd.Joint Institute。
文摘In the upcoming large-scale Internet of Things(Io T),it is increasingly challenging to defend against malicious traffic,due to the heterogeneity of Io T devices and the diversity of Io T communication protocols.In this paper,we propose a semi-supervised learning-based approach to detect malicious traffic at the access side.It overcomes the resource-bottleneck problem of traditional malicious traffic defenders which are deployed at the victim side,and also is free of labeled traffic data in model training.Specifically,we design a coarse-grained behavior model of Io T devices by self-supervised learning with unlabeled traffic data.Then,we fine-tune this model to improve its accuracy in malicious traffic detection by adopting a transfer learning method using a small amount of labeled data.Experimental results show that our method can achieve the accuracy of 99.52%and the F1-score of 99.52%with only 1%of the labeled training data based on the CICDDoS2019 dataset.Moreover,our method outperforms the stateof-the-art supervised learning-based methods in terms of accuracy,precision,recall and F1-score with 1%of the training data.
基金supported by the Fifth Key Project of Jiangsu Vocational Education Teaching Reform Research under Grant ZZZ13in part by the Science and Technology Project of Changzhou City under Grant CE20215032.
文摘Through semi-supervised learning and knowledge inheritance,a novel Takagi-Sugeno-Kang(TSK)fuzzy system framework is proposed for epilepsy data classification in this study.The new method is based on the maximum mean discrepancy(MMD)method and TSK fuzzy system,as a basic model for the classification of epilepsy data.First,formedical data,the interpretability of TSK fuzzy systems can ensure that the prediction results are traceable and safe.Second,in view of the deviation in the data distribution between the real source domain and the target domain,MMD is used to measure the distance between different data distributions.The objective function is constructed according to the MMD distance,and the distribution distance of different datasets is minimized to find the similar characteristics of different datasets.We introduce semi-supervised learning to further explore the relationship between data.Based on the MMD method,a semi-supervised learning(SSL)-MMD method is constructed by using pseudo-tags to realize the data distribution alignment of the same category.In addition,the idea of knowledge dissemination is used to learn pseudo-tags as additional data features.Finally,for epilepsy classification,the cross-domain TSK fuzzy system uses the cross-entropy function as the objective function and adopts the back-propagation strategy to optimize the parameters.The experimental results show that the new method can process complex epilepsy data and identify whether patients have epilepsy.
基金The publication of this article is funded by the Qatar National Library.
文摘Malaria is a lethal disease responsible for thousands of deaths worldwide every year.Manual methods of malaria diagnosis are timeconsuming that require a great deal of human expertise and efforts.Computerbased automated diagnosis of diseases is progressively becoming popular.Although deep learning models show high performance in the medical field,it demands a large volume of data for training which is hard to acquire for medical problems.Similarly,labeling of medical images can be done with the help of medical experts only.Several recent studies have utilized deep learning models to develop efficient malaria diagnostic system,which showed promising results.However,the most common problem with these models is that they need a large amount of data for training.This paper presents a computer-aided malaria diagnosis system that combines a semi-supervised generative adversarial network and transfer learning.The proposed model is trained in a semi-supervised manner and requires less training data than conventional deep learning models.Performance of the proposed model is evaluated on a publicly available dataset of blood smear images(with malariainfected and normal class)and achieved a classification accuracy of 96.6%.
文摘The number of botnet malware attacks on Internet devices has grown at an equivalent rate to the number of Internet devices that are connected to the Internet.Bot detection using machine learning(ML)with flow-based features has been extensively studied in the literature.Existing flow-based detection methods involve significant computational overhead that does not completely capture network communication patterns that might reveal other features ofmalicious hosts.Recently,Graph-Based Bot Detection methods using ML have gained attention to overcome these limitations,as graphs provide a real representation of network communications.The purpose of this study is to build a botnet malware detection system utilizing centrality measures for graph-based botnet detection and ML.We propose BotSward,a graph-based bot detection system that is based on ML.We apply the efficient centrality measures,which are Closeness Centrality(CC),Degree Centrality(CC),and PageRank(PR),and compare them with others used in the state-of-the-art.The efficiency of the proposed method is verified on the available Czech Technical University 13 dataset(CTU-13).The CTU-13 dataset contains 13 real botnet traffic scenarios that are connected to a command-and-control(C&C)channel and that cause malicious actions such as phishing,distributed denial-of-service(DDoS)attacks,spam attacks,etc.BotSward is robust to zero-day attacks,suitable for large-scale datasets,and is intended to produce better accuracy than state-of-the-art techniques.The proposed BotSward solution achieved 99%accuracy in botnet attack detection with a false positive rate as low as 0.0001%.
基金supported by the National Natural Science Foundation of China (Nos.62072127,62002076,61906049)Natural Science Foundation of Guangdong Province (Nos.2023A1515011774,2020A1515010423)+4 种基金Project 6142111180404 supported by CNKLSTISS,Science and Technology Program of Guangzhou,China (No.202002030131)Guangdong basic and applied basic research fund joint fund Youth Fund (No.2019A1515110213)Open Fund Project of Fujian Provincial Key Laboratory of Information Processing and Intelligent Control (Minjiang University) (No.MJUKF-IPIC202101)Natural Science Foundation of Guangdong Province No.2020A1515010423)Scientific research project for Guangzhou University (No.RP2022003).
文摘Recent state-of-the-art semi-supervised learning(SSL)methods usually use data augmentations as core components.Such methods,however,are limited to simple transformations such as the augmentations under the instance’s naive representations or the augmentations under the instance’s semantic representations.To tackle this problem,we offer a unique insight into data augmentations and propose a novel data-augmentation-based semi-supervised learning method,called Attentive Neighborhood Feature Aug-mentation(ANFA).The motivation of our method lies in the observation that the relationship between the given feature and its neighborhood may contribute to constructing more reliable transformations for the data,and further facilitating the classifier to distinguish the ambiguous features from the low-dense regions.Specially,we first project the labeled and unlabeled data points into an embedding space and then construct a neighbor graph that serves as a similarity measure based on the similar representations in the embedding space.Then,we employ an attention mechanism to transform the target features into augmented ones based on the neighbor graph.Finally,we formulate a novel semi-supervised loss by encouraging the predictions of the interpolations of augmented features to be consistent with the corresponding interpolations of the predictions of the target features.We carried out exper-iments on SVHN and CIFAR-10 benchmark datasets and the experimental results demonstrate that our method outperforms the state-of-the-art methods when the number of labeled examples is limited.
基金The National Natural Science Foundation of China (32371993)The Natural Science Research Key Project of Anhui Provincial University(2022AH040125&2023AH040135)The Key Research and Development Plan of Anhui Province (202204c06020022&2023n06020057)。
文摘This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits.
文摘Online review platforms are becoming increasingly popular,encouraging dishonest merchants and service providers to deceive customers by creating fake reviews for their goods or services.Using Sybil accounts,bot farms,and real account purchases,immoral actors demonize rivals and advertise their goods.Most academic and industry efforts have been aimed at detecting fake/fraudulent product or service evaluations for years.The primary hurdle to identifying fraudulent reviews is the lack of a reliable means to distinguish fraudulent reviews from real ones.This paper adopts a semi-supervised machine learning method to detect fake reviews on any website,among other things.Online reviews are classified using a semi-supervised approach(PU-learning)since there is a shortage of labeled data,and they are dynamic.Then,classification is performed using the machine learning techniques Support Vector Machine(SVM)and Nave Bayes.The performance of the suggested system has been compared with standard works,and experimental findings are assessed using several assessment metrics.
基金This work is supported by the National Natural Science Foundation of China(Nos.61771154,61603239,61772454,6171101570).
文摘Deep Learning(DL)is such a powerful tool that we have seen tremendous success in areas such as Computer Vision,Speech Recognition,and Natural Language Processing.Since Automated Modulation Classification(AMC)is an important part in Cognitive Radio Networks,we try to explore its potential in solving signal modulation recognition problem.It cannot be overlooked that DL model is a complex model,thus making them prone to over-fitting.DL model requires many training data to combat with over-fitting,but adding high quality labels to training data manually is not always cheap and accessible,especially in real-time system,which may counter unprecedented data in dataset.Semi-supervised Learning is a way to exploit unlabeled data effectively to reduce over-fitting in DL.In this paper,we extend Generative Adversarial Networks(GANs)to the semi-supervised learning will show it is a method can be used to create a more dataefficient classifier.
文摘The majority of big data analytics applied to transportation datasets suffer from being too domain-specific,that is,they draw conclusions for a dataset based on analytics on the same dataset.This makes models trained from one domain(e.g.taxi data)applies badly to a different domain(e.g.Uber data).To achieve accurate analyses on a new domain,substantial amounts of data must be available,which limits practical applications.To remedy this,we propose to use semi-supervised and active learning of big data to accomplish the domain adaptation task:Selectively choosing a small amount of datapoints from a new domain while achieving comparable performances to using all the datapoints.We choose the New York City(NYC)transportation data of taxi and Uber as our dataset,simulating different domains with 90%as the source data domain for training and the remaining 10%as the target data domain for evaluation.We propose semi-supervised and active learning strategies and apply it to the source domain for selecting datapoints.Experimental results show that our adaptation achieves a comparable performance of using all datapoints while using only a fraction of them,substantially reducing the amount of data required.Our approach has two major advantages:It can make accurate analytics and predictions when big datasets are not available,and even if big datasets are available,our approach chooses the most informative datapoints out of the dataset,making the process much more efficient without having to process huge amounts of data.
基金supported by China Southern Power Grid Co.Ltd.science and technology project(Research on the theory,technology and application of stereoscopic disaster defense for power distribution network in large city,GZHKJXM20180060)National Natural Science Foundation of China(No.51477100).
文摘It is crucial to maintain the safe and stable operation of distribution transformers,which constitute a key part of power systems.In the event of transformer failure,the fault type must be diagnosed in a timely and accurate manner.To this end,a transformer fault diagnosis method based on infrared image processing and semi-supervised learning is proposed herein.First,we perform feature extraction on the collected infrared-image data to extract temperature,texture,and shape features as the model reference vectors.Then,a generative adversarial network(GAN)is constructed to generate synthetic samples for the minority subset of labelled samples.The proposed method can learn information from unlabeled sample data,unlike conventional supervised learning methods.Subsequently,a semi-supervised graph model is trained on the entire dataset,i.e.,both labeled and unlabeled data.Finally,we test the proposed model on an actual dataset collected from a Chinese electricity provider.The experimental results show that the use of feature extraction,sample generation,and semi-supervised learning model can improve the accuracy of transformer fault classification.This verifies the effectiveness of the proposed method.
基金Projects(61603393,61973306)supported in part by the National Natural Science Foundation of ChinaProject(BK20160275)supported by the Natural Science Foundation of Jiangsu Province,China+1 种基金Projects(2015M581885,2018T110571)supported by the Postdoctoral Science Foundation of ChinaProject(PAL-N201706)supported by the Open Project Foundation of State Key Laboratory of Synthetical Automation for Process Industries of Northeastern University,China
文摘Direct online measurement on product quality of industrial processes is difficult to be realized,which leads to a large number of unlabeled samples in modeling data.Therefore,it needs to employ semi-supervised learning(SSL)method to establish the soft sensor model of product quality.Considering the slow time-varying characteristic of industrial processes,the model parameters should be updated smoothly.According to this characteristic,this paper proposes an online adaptive semi-supervised learning algorithm based on random vector functional link network(RVFLN),denoted as OAS-RVFLN.By introducing a L2-fusion term that can be seen a weight deviation constraint,the proposed algorithm unifies the offline and online learning,and achieves smoothness of model parameter update.Empirical evaluations both on benchmark testing functions and datasets reveal that the proposed OAS-RVFLN can outperform the conventional methods in learning speed and accuracy.Finally,the OAS-RVFLN is applied to the coal dense medium separation process in coal industry to estimate the ash content of coal product,which further verifies its effectiveness and potential of industrial application.
基金This research was supported by the BK21 FOUR(Fostering Outstanding Universities for Research)funded by the Ministry of Education(MOE,Korea)and National Research Foundation of Korea(NFR).
文摘Artificial intelligent based dialog systems are getting attention from both business and academic communities.The key parts for such intelligent chatbot systems are domain classification,intent detection,and named entity recognition.Various supervised,unsupervised,and hybrid approaches are used to detect each field.Such intelligent systems,also called natural language understanding systems analyze user requests in sequential order:domain classification,intent,and entity recognition based on the semantic rules of the classified domain.This sequential approach propagates the downstream error;i.e.,if the domain classification model fails to classify the domain,intent and entity recognition fail.Furthermore,training such intelligent system necessitates a large number of user-annotated datasets for each domain.This study proposes a single joint predictive deep neural network framework based on long short-term memory using only a small user-annotated dataset to address these issues.It investigates value added by incorporating unlabeled data from user chatting logs into multi-domain spoken language understanding systems.Systematic experimental analysis of the proposed joint frameworks,along with the semi-supervised multi-domain model,using open-source annotated and unannotated utterances shows robust improvement in the predictive performance of the proposed multi-domain intelligent chatbot over a base joint model and joint model based on adversarial learning.
基金This work was supported by the National Research Foundation of Korea(No.2020R1A2C1014829)by the Korea Medical Device Development Fund grant,which is funded by the Government of the Republic of Korea Korea government(the Ministry of Science and ICT+2 种基金the Ministry of Trade,Industry and Energythe Ministry of Health and Welfareand the Ministry of Food and Drug Safety)(grant KMDF_PR_20200901_0095).
文摘For the classification problem in practice,one of the challenging issues is to obtain enough labeled data for training.Moreover,even if such labeled data has been sufficiently accumulated,most datasets often exhibit long-tailed distribution with heavy class imbalance,which results in a biased model towards a majority class.To alleviate such class imbalance,semisupervised learning methods using additional unlabeled data have been considered.However,as a matter of course,the accuracy is much lower than that from supervised learning.In this study,under the assumption that additional unlabeled data is available,we propose the iterative semi-supervised learning algorithms,which iteratively correct the labeling of the extra unlabeled data based on softmax probabilities.The results show that the proposed algorithms provide the accuracy as high as that from the supervised learning.To validate the proposed algorithms,we tested on the two scenarios:with the balanced unlabeled dataset and with the imbalanced unlabeled dataset.Under both scenarios,our proposed semi-supervised learning algorithms provided higher accuracy than previous state-of-the-arts.Code is available at https://github.com/HeewonChung92/iterative-semi-learning.