Unconstrained face images are interfered by many factors such as illumination,posture,expression,occlusion,age,accessories and so on,resulting in the randomness of the noise pollution implied in the original samples.I...Unconstrained face images are interfered by many factors such as illumination,posture,expression,occlusion,age,accessories and so on,resulting in the randomness of the noise pollution implied in the original samples.In order to improve the sample quality,a weighted block cooperative sparse representation algorithm is proposed based on visual saliency dictionary.First,the algorithm uses the biological visual attention mechanism to quickly and accurately obtain the face salient target and constructs the visual salient dictionary.Then,a block cooperation framework is presented to perform sparse coding for different local structures of human face,and the weighted regular term is introduced in the sparse representation process to enhance the identification of information hidden in the coding coefficients.Finally,by synthesising the sparse representation results of all visual salient block dictionaries,the global coding residual is obtained and the class label is given.The experimental results on four databases,that is,AR,extended Yale B,LFW and PubFig,indicate that the combination of visual saliency dictionary,block cooperative sparse representation and weighted constraint coding can effectively enhance the accuracy of sparse representation of the samples to be tested and improve the performance of unconstrained face recognition.展开更多
Visual attention is a mechanism that enables the visual system to detect potentially important objects in complex environment. Most computational visual attention models are designed with inspirations from mammalian v...Visual attention is a mechanism that enables the visual system to detect potentially important objects in complex environment. Most computational visual attention models are designed with inspirations from mammalian visual systems.However, electrophysiological and behavioral evidences indicate that avian species are animals with high visual capability that can process complex information accurately in real time. Therefore,the visual system of the avian species, especially the nuclei related to the visual attention mechanism, are investigated in this paper. Afterwards, a hierarchical visual attention model is proposed for saliency detection. The optic tectum neuron responses are computed and the self-information is used to compute primary saliency maps in the first hierarchy. The "winner-takeall" network in the tecto-isthmal projection is simulated and final saliency maps are estimated with the regularized random walks ranking in the second hierarchy. Comparison results verify that the proposed model, which can define the focus of attention accurately, outperforms several state-of-the-art models.This study provides insights into the relationship between the visual attention mechanism and the avian visual pathways. The computational visual attention model may reveal the underlying neural mechanism of the nuclei for biological visual attention.展开更多
Traditional vehicle detection algorithms use traverse search based vehicle candidate generation and hand crafted based classifier training for vehicle candidate verification.These types of methods generally have high ...Traditional vehicle detection algorithms use traverse search based vehicle candidate generation and hand crafted based classifier training for vehicle candidate verification.These types of methods generally have high processing times and low vehicle detection performance.To address this issue,a visual saliency and deep sparse convolution hierarchical model based vehicle detection algorithm is proposed.A visual saliency calculation is firstly used to generate a small vehicle candidate area.The vehicle candidate sub images are then loaded into a sparse deep convolution hierarchical model with an SVM-based classifier to perform the final detection.The experimental results demonstrate that the proposed method is with 94.81% correct rate and 0.78% false detection rate on the existing datasets and the real road pictures captured by our group,which outperforms the existing state-of-the-art algorithms.More importantly,high discriminative multi-scale features are generated by deep sparse convolution network which has broad application prospects in target recognition in the field of intelligent vehicle.展开更多
In order to further improve the efficiency of video compression, we introduce a perceptual characteristics of Human Visual System (HVS) to video coding, and propose a novel video coding rate control algorithm based on...In order to further improve the efficiency of video compression, we introduce a perceptual characteristics of Human Visual System (HVS) to video coding, and propose a novel video coding rate control algorithm based on human visual saliency model in H.264/AVC. Firstly, we modifie Itti's saliency model. Secondly, target bits of each frame are allocated through the correlation of saliency region between the current and previous frame, and the complexity of each MB is modified through the saliency value and its Mean Absolute Difference (MAD) value. Lastly, the algorithm was implemented in JVT JM12.2. Simulation results show that, comparing with traditional rate control algorithm, the proposed one can reduce the coding bit rate and improve the reconstructed video subjective quality, especially for visual saliency region. It is very suitable for wireless video transmission.展开更多
Saliency detection models, which are used to extract salient regions in visual scenes, are widely used in various multimedia processing applications. It has attracted much attention in the area of computer vision over...Saliency detection models, which are used to extract salient regions in visual scenes, are widely used in various multimedia processing applications. It has attracted much attention in the area of computer vision over the past decades. Since most images or videos over the Internet are stored in compressed domains such as images in JPEG format and videos in MPEG2 format, H.264 format, and MPEG4 Visual format, many saliency detection models have been proposed in the compressed domain recently. We provide a review of our works on saliency detection models in the compressed domain in this paper.Besides, we introduce some commonly used fusion strategies to combine spatial saliency map and temporal saliency map to compute the final video saliency map.展开更多
Craters are salient terrain features on planetary surfaces, and provide useful information about the relative dating of geological unit of planets. In addition, they are ideal landmarks for spacecraft navigation. Due ...Craters are salient terrain features on planetary surfaces, and provide useful information about the relative dating of geological unit of planets. In addition, they are ideal landmarks for spacecraft navigation. Due to low contrast and uneven illumination, automatic extraction of craters remains a challenging task. This paper presents a saliency detection method for crater edges and a feature matching algorithm based on edges informa- tion. The craters are extracted through saliency edges detection, edge extraction and selection, feature matching of the same crater edges and robust ellipse fitting. In the edges matching algorithm, a crater feature model is proposed by analyzing the relationship between highlight region edges and shadow region ones. Then, crater edges are paired through the effective matching algorithm. Experiments of real planetary images show that the proposed approach is robust to different lights and topographies, and the detection rate is larger than 90%.展开更多
In this paper,we propose a new visual tracking method in light of salience information and deep learning.Salience detection is used to exploit features with salient information of the image.Complicated representations...In this paper,we propose a new visual tracking method in light of salience information and deep learning.Salience detection is used to exploit features with salient information of the image.Complicated representations of image features can be gained by the function of every layer in convolution neural network(CNN).The characteristic of biology vision in attention-based salience is similar to the neuroscience features of convolution neural network.This motivates us to improve the representation ability of CNN with functions of salience detection.We adopt the fully-convolution networks(FCNs)to perform salience detection.We take parts of the network structure to perform salience extraction,which promotes the classification ability of the model.The network we propose shows great performance in tracking with the salient information.Compared with other excellent algorithms,our algorithm can track the target better in the open tracking datasets.We realize the 0.5592 accuracy on visual object tracking 2015(VOT15)dataset.For unmanned aerial vehicle 123(UAV123)dataset,the precision and success rate of our tracker is 0.710 and 0.429.展开更多
Based on salient visual regions for mobile robot navigation in unknown environments, a new place recognition system was presented. The system uses monocular camera to acquire omni-directional images of the environment...Based on salient visual regions for mobile robot navigation in unknown environments, a new place recognition system was presented. The system uses monocular camera to acquire omni-directional images of the environment where the robot locates. Salient local regions are detected from these images using center-surround difference method, which computes opponencies of color and texture among multi-scale image spaces. And then they are organized using hidden Markov model (HMM) to form the vertex of topological map. So localization, that is place recognition in our system, can be converted to evaluation of HMM. Experimental results show that the saliency detection is immune to the changes of scale, 2D rotation and viewpoint etc. The created topological map has smaller size and a higher ratio of recognition is obtained.展开更多
A new method for automatic salient object segmentation is presented.Salient object segmentation is an important research area in the field of object recognition,image retrieval,image editing,scene reconstruction,and 2...A new method for automatic salient object segmentation is presented.Salient object segmentation is an important research area in the field of object recognition,image retrieval,image editing,scene reconstruction,and 2D/3D conversion.In this work,salient object segmentation is performed using saliency map and color segmentation.Edge,color and intensity feature are extracted from mean shift segmentation(MSS)image,and saliency map is created using these features.First average saliency per segment image is calculated using the color information from MSS image and generated saliency map.Then,second average saliency per segment image is calculated by applying same procedure for the first image to the thresholding,labeling,and hole-filling applied image.Thresholding,labeling and hole-filling are applied to the mean image of the generated two images to get the final salient object segmentation.The effectiveness of proposed method is proved by showing 80%,89%and 80%of precision,recall and F-measure values from the generated salient object segmentation image and ground truth image.展开更多
This work presents a robust and rotationally invariant shape descriptor, namely perception pronouncement (called p2), to mathematically model the eye fixations, p2 takes two criteria - the local consideration of sur...This work presents a robust and rotationally invariant shape descriptor, namely perception pronouncement (called p2), to mathematically model the eye fixations, p2 takes two criteria - the local consideration of surface curvature and the global consideration of view- independent visibility - into account. Differing from existing works that often computed the intrinsic surface property of visibility in imaging space, a novel approach is proposed to approxi- mate the attribute in object space using Gauss map and Ray tracing. With the presented shape descriptor, mesh saliency detection, which refers to reasoning about which regions or points of a surface axe important, is more sensible, especially when 3D models fall into two categories: (1) the models possess significant interior/exterior structures; (2) the models contain regions where the contrast in visibility is high. For the models that are out of the categories, saliencies achieved by our approach are comparable to or even better than those of state-of-the-axt methods.展开更多
近年来,波段选择在高光谱图像降维处理中得到了广泛地应用,然而常用的数据降维方法并没能将与人类视觉系统相关的信息进行有效利用,如果将人类与生俱来的视觉注意机制能力应用到高光谱图像中目标的视觉显著性特征的增强或识别,对于高光...近年来,波段选择在高光谱图像降维处理中得到了广泛地应用,然而常用的数据降维方法并没能将与人类视觉系统相关的信息进行有效利用,如果将人类与生俱来的视觉注意机制能力应用到高光谱图像中目标的视觉显著性特征的增强或识别,对于高光谱图像的目标检测研究无疑会产生相当的促进作用。研究提出引入视觉注意机制理论应用于波段选择研究,构建面向目标检测应用的视觉注意机制波段选择模型。通过分析计算波段图幅的目标与背景的可识别程度,量化所在波段对地物目标与背景的判别能力,提出了基于目标视觉可识别度的波段选择方法;利用LC显著性算法进行空间域的视觉显著性目标分析,计算背景与目标的显著性差异绝对值,提出基于LC显著目标结构分布的波段选择方法。将这两种方法结合提出的改进子空间划分方法,建立面向目标检测的视觉注意机制波段选择模型,并经高光谱遥感AVIRIS San Diego公开数据集进行目标检测实验验证,结果表明所提出的基于视觉注意机制的波段选择模型对于目标检测应用具有较好的检测效果,实现了数据降维和高效的计算处理。展开更多
基金Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20170765National Natural Science Foundation of China,Grant/Award Number:61703201+1 种基金Future Network Scientific Research Fund Project,Grant/Award Number:FNSRFP2021YB26Science Foundation of Nanjing Institute of Technology,Grant/Award Numbers:ZKJ202002,ZKJ202003,and YKJ202019。
文摘Unconstrained face images are interfered by many factors such as illumination,posture,expression,occlusion,age,accessories and so on,resulting in the randomness of the noise pollution implied in the original samples.In order to improve the sample quality,a weighted block cooperative sparse representation algorithm is proposed based on visual saliency dictionary.First,the algorithm uses the biological visual attention mechanism to quickly and accurately obtain the face salient target and constructs the visual salient dictionary.Then,a block cooperation framework is presented to perform sparse coding for different local structures of human face,and the weighted regular term is introduced in the sparse representation process to enhance the identification of information hidden in the coding coefficients.Finally,by synthesising the sparse representation results of all visual salient block dictionaries,the global coding residual is obtained and the class label is given.The experimental results on four databases,that is,AR,extended Yale B,LFW and PubFig,indicate that the combination of visual saliency dictionary,block cooperative sparse representation and weighted constraint coding can effectively enhance the accuracy of sparse representation of the samples to be tested and improve the performance of unconstrained face recognition.
基金supported by Natural Science Foundation of China(61425008,61333004,61273054)
文摘Visual attention is a mechanism that enables the visual system to detect potentially important objects in complex environment. Most computational visual attention models are designed with inspirations from mammalian visual systems.However, electrophysiological and behavioral evidences indicate that avian species are animals with high visual capability that can process complex information accurately in real time. Therefore,the visual system of the avian species, especially the nuclei related to the visual attention mechanism, are investigated in this paper. Afterwards, a hierarchical visual attention model is proposed for saliency detection. The optic tectum neuron responses are computed and the self-information is used to compute primary saliency maps in the first hierarchy. The "winner-takeall" network in the tecto-isthmal projection is simulated and final saliency maps are estimated with the regularized random walks ranking in the second hierarchy. Comparison results verify that the proposed model, which can define the focus of attention accurately, outperforms several state-of-the-art models.This study provides insights into the relationship between the visual attention mechanism and the avian visual pathways. The computational visual attention model may reveal the underlying neural mechanism of the nuclei for biological visual attention.
基金Supported by National Natural Science Foundation of China(Grant Nos.U1564201,61573171,61403172,51305167)China Postdoctoral Science Foundation(Grant Nos.2015T80511,2014M561592)+3 种基金Jiangsu Provincial Natural Science Foundation of China(Grant No.BK20140555)Six Talent Peaks Project of Jiangsu Province,China(Grant Nos.2015-JXQC-012,2014-DZXX-040)Jiangsu Postdoctoral Science Foundation,China(Grant No.1402097C)Jiangsu University Scientific Research Foundation for Senior Professionals,China(Grant No.14JDG028)
文摘Traditional vehicle detection algorithms use traverse search based vehicle candidate generation and hand crafted based classifier training for vehicle candidate verification.These types of methods generally have high processing times and low vehicle detection performance.To address this issue,a visual saliency and deep sparse convolution hierarchical model based vehicle detection algorithm is proposed.A visual saliency calculation is firstly used to generate a small vehicle candidate area.The vehicle candidate sub images are then loaded into a sparse deep convolution hierarchical model with an SVM-based classifier to perform the final detection.The experimental results demonstrate that the proposed method is with 94.81% correct rate and 0.78% false detection rate on the existing datasets and the real road pictures captured by our group,which outperforms the existing state-of-the-art algorithms.More importantly,high discriminative multi-scale features are generated by deep sparse convolution network which has broad application prospects in target recognition in the field of intelligent vehicle.
基金supported by National Natural Science Foundation of China under Grant No.610700800973 Sub-Program Projects under Grant No.2009CB320906+3 种基金National Science and Technology of Major Special Projects under Grant No.2010ZX03004-003S&T Planning Project of Hubei Provincial Department of Education under Grant No. Q20112805H&SPlanning Project of Hubei Provincial Department of Education under Grant No.2011jyte142Science Foundation of HubeiProvincial under Grant No.2010CDB05103
文摘In order to further improve the efficiency of video compression, we introduce a perceptual characteristics of Human Visual System (HVS) to video coding, and propose a novel video coding rate control algorithm based on human visual saliency model in H.264/AVC. Firstly, we modifie Itti's saliency model. Secondly, target bits of each frame are allocated through the correlation of saliency region between the current and previous frame, and the complexity of each MB is modified through the saliency value and its Mean Absolute Difference (MAD) value. Lastly, the algorithm was implemented in JVT JM12.2. Simulation results show that, comparing with traditional rate control algorithm, the proposed one can reduce the coding bit rate and improve the reconstructed video subjective quality, especially for visual saliency region. It is very suitable for wireless video transmission.
文摘Saliency detection models, which are used to extract salient regions in visual scenes, are widely used in various multimedia processing applications. It has attracted much attention in the area of computer vision over the past decades. Since most images or videos over the Internet are stored in compressed domains such as images in JPEG format and videos in MPEG2 format, H.264 format, and MPEG4 Visual format, many saliency detection models have been proposed in the compressed domain recently. We provide a review of our works on saliency detection models in the compressed domain in this paper.Besides, we introduce some commonly used fusion strategies to combine spatial saliency map and temporal saliency map to compute the final video saliency map.
基金supported by the National Natural Science Foundation of China(61210012)
文摘Craters are salient terrain features on planetary surfaces, and provide useful information about the relative dating of geological unit of planets. In addition, they are ideal landmarks for spacecraft navigation. Due to low contrast and uneven illumination, automatic extraction of craters remains a challenging task. This paper presents a saliency detection method for crater edges and a feature matching algorithm based on edges informa- tion. The craters are extracted through saliency edges detection, edge extraction and selection, feature matching of the same crater edges and robust ellipse fitting. In the edges matching algorithm, a crater feature model is proposed by analyzing the relationship between highlight region edges and shadow region ones. Then, crater edges are paired through the effective matching algorithm. Experiments of real planetary images show that the proposed approach is robust to different lights and topographies, and the detection rate is larger than 90%.
文摘In this paper,we propose a new visual tracking method in light of salience information and deep learning.Salience detection is used to exploit features with salient information of the image.Complicated representations of image features can be gained by the function of every layer in convolution neural network(CNN).The characteristic of biology vision in attention-based salience is similar to the neuroscience features of convolution neural network.This motivates us to improve the representation ability of CNN with functions of salience detection.We adopt the fully-convolution networks(FCNs)to perform salience detection.We take parts of the network structure to perform salience extraction,which promotes the classification ability of the model.The network we propose shows great performance in tracking with the salient information.Compared with other excellent algorithms,our algorithm can track the target better in the open tracking datasets.We realize the 0.5592 accuracy on visual object tracking 2015(VOT15)dataset.For unmanned aerial vehicle 123(UAV123)dataset,the precision and success rate of our tracker is 0.710 and 0.429.
基金Projects(60234030 ,60404021) supported by the National Natural Science Foundation of China
文摘Based on salient visual regions for mobile robot navigation in unknown environments, a new place recognition system was presented. The system uses monocular camera to acquire omni-directional images of the environment where the robot locates. Salient local regions are detected from these images using center-surround difference method, which computes opponencies of color and texture among multi-scale image spaces. And then they are organized using hidden Markov model (HMM) to form the vertex of topological map. So localization, that is place recognition in our system, can be converted to evaluation of HMM. Experimental results show that the saliency detection is immune to the changes of scale, 2D rotation and viewpoint etc. The created topological map has smaller size and a higher ratio of recognition is obtained.
文摘A new method for automatic salient object segmentation is presented.Salient object segmentation is an important research area in the field of object recognition,image retrieval,image editing,scene reconstruction,and 2D/3D conversion.In this work,salient object segmentation is performed using saliency map and color segmentation.Edge,color and intensity feature are extracted from mean shift segmentation(MSS)image,and saliency map is created using these features.First average saliency per segment image is calculated using the color information from MSS image and generated saliency map.Then,second average saliency per segment image is calculated by applying same procedure for the first image to the thresholding,labeling,and hole-filling applied image.Thresholding,labeling and hole-filling are applied to the mean image of the generated two images to get the final salient object segmentation.The effectiveness of proposed method is proved by showing 80%,89%and 80%of precision,recall and F-measure values from the generated salient object segmentation image and ground truth image.
基金Supported by China Scholarship Council(201206230015)China NSFC Key Project(61133009)the National 973 Program of China(2011CB302203)
文摘This work presents a robust and rotationally invariant shape descriptor, namely perception pronouncement (called p2), to mathematically model the eye fixations, p2 takes two criteria - the local consideration of surface curvature and the global consideration of view- independent visibility - into account. Differing from existing works that often computed the intrinsic surface property of visibility in imaging space, a novel approach is proposed to approxi- mate the attribute in object space using Gauss map and Ray tracing. With the presented shape descriptor, mesh saliency detection, which refers to reasoning about which regions or points of a surface axe important, is more sensible, especially when 3D models fall into two categories: (1) the models possess significant interior/exterior structures; (2) the models contain regions where the contrast in visibility is high. For the models that are out of the categories, saliencies achieved by our approach are comparable to or even better than those of state-of-the-axt methods.
文摘近年来,波段选择在高光谱图像降维处理中得到了广泛地应用,然而常用的数据降维方法并没能将与人类视觉系统相关的信息进行有效利用,如果将人类与生俱来的视觉注意机制能力应用到高光谱图像中目标的视觉显著性特征的增强或识别,对于高光谱图像的目标检测研究无疑会产生相当的促进作用。研究提出引入视觉注意机制理论应用于波段选择研究,构建面向目标检测应用的视觉注意机制波段选择模型。通过分析计算波段图幅的目标与背景的可识别程度,量化所在波段对地物目标与背景的判别能力,提出了基于目标视觉可识别度的波段选择方法;利用LC显著性算法进行空间域的视觉显著性目标分析,计算背景与目标的显著性差异绝对值,提出基于LC显著目标结构分布的波段选择方法。将这两种方法结合提出的改进子空间划分方法,建立面向目标检测的视觉注意机制波段选择模型,并经高光谱遥感AVIRIS San Diego公开数据集进行目标检测实验验证,结果表明所提出的基于视觉注意机制的波段选择模型对于目标检测应用具有较好的检测效果,实现了数据降维和高效的计算处理。