We report the construction of a graphene/tourmaline/TiO2(G/T/TiO2)composite system with enhanced charge‐carrier separation,and therefore enhanced photocatalytic properties,based on tailoring the surface‐charged stat...We report the construction of a graphene/tourmaline/TiO2(G/T/TiO2)composite system with enhanced charge‐carrier separation,and therefore enhanced photocatalytic properties,based on tailoring the surface‐charged state of graphene and/or by introducing an external electric field arising from tourmaline.A simple two‐step hydrothermal method was used to synthesize G/T/TiO2composites and poly(diallyldimethylammonium chloride)‐G/T/TiO2composites.In the photocatalytic degradation of2‐propanol(IPA),the catalytic activity of the composite containing negatively charged graphene was higher than of the composite containing positively charged graphene.The highest acetone evolution rate(223?mol/h)was achieved using the ternary composite with the optimum composition,i.e.,G0.5/T5/TiO2(0.5wt%graphene and5wt%tourmaline).The involvement of tourmaline and graphene in the composite is believed to facilitate the separation and transportation of electrons and holes photogenerated in TiO2.This synergetic effect could account for the enhanced photocatalytic activity of the G/T/TiO2composite.A mechanistic study indicated that O2??radicals and holes were the main reactive oxygen species in photocatalytic degradation of IPA.展开更多
TiO2 nanocrystals/graphene (TiO2/GR) composite are prepared by combining flocculation and hydrothermal reduction technology using graphite oxide and TiO2 colloid as precursors. The obtained materials are examined by...TiO2 nanocrystals/graphene (TiO2/GR) composite are prepared by combining flocculation and hydrothermal reduction technology using graphite oxide and TiO2 colloid as precursors. The obtained materials are examined by scanning electron microscopy, transition electron microscopy, X-ray diffraction, N2 adsorption desorption, and ultraviolet-visible diffuse spectroscopy. The results suggest that the presence of TiO2 nanocrystals with diameter of about 15 nm prevents GR nanosheets from agglomeration. Owing to the uniform distribution of TiO2 nanocrystals on the GR nanosheets, TiO2/GR composite exhibits stronger light absorption in the visible region, higher adsorption capacity to methylene blue and higher efficiency of charge separation and transportation compared with pure TiO2. Moreover, the TiO2/GR composite with a GR content of 30% shows higher photocatalytic removal efficiency of MB from water than that of pure TiO2 and commercial P25 under both UV and sunlight irradiation.展开更多
This research work aims to reduce the band gap of thin layers of titanium oxide by the incorporation of graphene oxide sheets. Thin layers of the TiO2-GO composites were prepared on a glass substrate by the spin-coati...This research work aims to reduce the band gap of thin layers of titanium oxide by the incorporation of graphene oxide sheets. Thin layers of the TiO2-GO composites were prepared on a glass substrate by the spin-coating technique from GO and an aqueous solution of TiO2. A significant decrease in optical band gap was observed at the TiO2-GO compound compared to that of pure TiO2. Samples as prepared were characterized using XRD, SEM and UV-visible spectra. XRD analysis revealed the amorphous nature of the deposited layers. Scanning electron microscope reveals the dispersion of graphene nanofiles among titanium oxide nanoparticles distributed at the surface with an almost uniform size distribution. The band gap has been calculated and is around 2 eV after incorporation of Graphene oxide. The chemical bond C-Ti between the titanium oxide and graphene sheets is at the origin of this reduction.展开更多
The synthesis of graphene supported TiO2(b) nanosheets by a double hydrother- mal method for lithium storage was reported. The titanate nanosheets synthesized by the first hydrothermal progress and the graphene oxid...The synthesis of graphene supported TiO2(b) nanosheets by a double hydrother- mal method for lithium storage was reported. The titanate nanosheets synthesized by the first hydrothermal progress and the graphene oxide obtained by the oxidation of graphite were hydrothermally treated together to fabricate the TiO2(b)/graphene composite. The electrochemical measurements illustrate that the graphene supporter obviously improves the cyclic performance of TiO2(b), which can be attributed to the better dispersion and the decrease of resistance for the TiO2(b) nanosheets in the composite.展开更多
TiO2/graphene composite photocatalysts have been prepared by a simple liquid phase deposition method using titanium tetrafluoride and electron beam (EB) irradiation-pretreated graphene as the raw materials. The prod...TiO2/graphene composite photocatalysts have been prepared by a simple liquid phase deposition method using titanium tetrafluoride and electron beam (EB) irradiation-pretreated graphene as the raw materials. The products were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The effects of varying the synthesis parameters such as graphene content, concentration of titanium tetrafluoride solution and irradiation dose were investigated. It was found that the preparation conditions had a significant effect on the structure and properties of the final products. The irradiated graphene was covered with petal-like anatase TiO2 nanoparticles, which were more uniform and smaller in size than those in products synthesized without EB irradiation-pretreated graphene. The photocatalytic activities of the products were evaluated using the photocatalytic degradation of methyl orange as a probe reaction. The results showed that the products synthesized using EB irradiation-pretreated graphene exhibited higher photocatalytic activities than those using graphene without EB irradiation pretreatment.展开更多
基金supported by the National Basic Research Program of China (973 Program,2014CB239300)the National Natural Science Foundation of China (51572191)the Natural Science Foundation of Tianjin (13JCYBJC16600)~~
文摘We report the construction of a graphene/tourmaline/TiO2(G/T/TiO2)composite system with enhanced charge‐carrier separation,and therefore enhanced photocatalytic properties,based on tailoring the surface‐charged state of graphene and/or by introducing an external electric field arising from tourmaline.A simple two‐step hydrothermal method was used to synthesize G/T/TiO2composites and poly(diallyldimethylammonium chloride)‐G/T/TiO2composites.In the photocatalytic degradation of2‐propanol(IPA),the catalytic activity of the composite containing negatively charged graphene was higher than of the composite containing positively charged graphene.The highest acetone evolution rate(223?mol/h)was achieved using the ternary composite with the optimum composition,i.e.,G0.5/T5/TiO2(0.5wt%graphene and5wt%tourmaline).The involvement of tourmaline and graphene in the composite is believed to facilitate the separation and transportation of electrons and holes photogenerated in TiO2.This synergetic effect could account for the enhanced photocatalytic activity of the G/T/TiO2composite.A mechanistic study indicated that O2??radicals and holes were the main reactive oxygen species in photocatalytic degradation of IPA.
文摘TiO2 nanocrystals/graphene (TiO2/GR) composite are prepared by combining flocculation and hydrothermal reduction technology using graphite oxide and TiO2 colloid as precursors. The obtained materials are examined by scanning electron microscopy, transition electron microscopy, X-ray diffraction, N2 adsorption desorption, and ultraviolet-visible diffuse spectroscopy. The results suggest that the presence of TiO2 nanocrystals with diameter of about 15 nm prevents GR nanosheets from agglomeration. Owing to the uniform distribution of TiO2 nanocrystals on the GR nanosheets, TiO2/GR composite exhibits stronger light absorption in the visible region, higher adsorption capacity to methylene blue and higher efficiency of charge separation and transportation compared with pure TiO2. Moreover, the TiO2/GR composite with a GR content of 30% shows higher photocatalytic removal efficiency of MB from water than that of pure TiO2 and commercial P25 under both UV and sunlight irradiation.
文摘This research work aims to reduce the band gap of thin layers of titanium oxide by the incorporation of graphene oxide sheets. Thin layers of the TiO2-GO composites were prepared on a glass substrate by the spin-coating technique from GO and an aqueous solution of TiO2. A significant decrease in optical band gap was observed at the TiO2-GO compound compared to that of pure TiO2. Samples as prepared were characterized using XRD, SEM and UV-visible spectra. XRD analysis revealed the amorphous nature of the deposited layers. Scanning electron microscope reveals the dispersion of graphene nanofiles among titanium oxide nanoparticles distributed at the surface with an almost uniform size distribution. The band gap has been calculated and is around 2 eV after incorporation of Graphene oxide. The chemical bond C-Ti between the titanium oxide and graphene sheets is at the origin of this reduction.
基金supported by the Natural Science Foundation of Fujian Province(No.2013J05027)
文摘The synthesis of graphene supported TiO2(b) nanosheets by a double hydrother- mal method for lithium storage was reported. The titanate nanosheets synthesized by the first hydrothermal progress and the graphene oxide obtained by the oxidation of graphite were hydrothermally treated together to fabricate the TiO2(b)/graphene composite. The electrochemical measurements illustrate that the graphene supporter obviously improves the cyclic performance of TiO2(b), which can be attributed to the better dispersion and the decrease of resistance for the TiO2(b) nanosheets in the composite.
基金The work was co-supported by the National Natural Science Foundation of China (No. 20871081), the Science and Technology Commission of Shanghai Municipality (Nos. 10QH1401000 and 10DZ0500100), the Research Funding of the State Key Laboratory of Chemical Engineering (ECUST), the Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry (ECNU), and Shanghai Leading Academic Disciplines (No. $30109).
文摘TiO2/graphene composite photocatalysts have been prepared by a simple liquid phase deposition method using titanium tetrafluoride and electron beam (EB) irradiation-pretreated graphene as the raw materials. The products were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The effects of varying the synthesis parameters such as graphene content, concentration of titanium tetrafluoride solution and irradiation dose were investigated. It was found that the preparation conditions had a significant effect on the structure and properties of the final products. The irradiated graphene was covered with petal-like anatase TiO2 nanoparticles, which were more uniform and smaller in size than those in products synthesized without EB irradiation-pretreated graphene. The photocatalytic activities of the products were evaluated using the photocatalytic degradation of methyl orange as a probe reaction. The results showed that the products synthesized using EB irradiation-pretreated graphene exhibited higher photocatalytic activities than those using graphene without EB irradiation pretreatment.