A simple approach to enhance the photocatalytic activity of red phosphorus(P) was developed.A mechanical ball milling method was applied to reduce the size of red P and to deposit graphene quantum dots onto red P. T...A simple approach to enhance the photocatalytic activity of red phosphorus(P) was developed.A mechanical ball milling method was applied to reduce the size of red P and to deposit graphene quantum dots onto red P. The product was characterized by scanning electron microscopy, transmission electron microscopy, contact angle measurements, zeta-potential measurements, X-ray diffraction and UV–vis absorption spectroscopy. The product exhibited high visible-light-driven photocatalytic performance in the photodegradation of rhodamine B.展开更多
基金partially supported by grants from the Research Grants Council of Hong Kong (Nos. 404112 and T23-407/13-N)supported by the National Natural Science Foundation of China (No. 21173179)a grant from the Vice-Chancellor's One-off Discretionary Fund of The Chinese University of Hong Kong (No. VCF2014016)
文摘A simple approach to enhance the photocatalytic activity of red phosphorus(P) was developed.A mechanical ball milling method was applied to reduce the size of red P and to deposit graphene quantum dots onto red P. The product was characterized by scanning electron microscopy, transmission electron microscopy, contact angle measurements, zeta-potential measurements, X-ray diffraction and UV–vis absorption spectroscopy. The product exhibited high visible-light-driven photocatalytic performance in the photodegradation of rhodamine B.