A dual functional CNTs@graphene/CNTs cathode for Li–Se battery was constructed by a CNTs@graphene network and a CNTs interlayer. CNTs were first integrated with graphene to form a three-dimensional(3D) framework an...A dual functional CNTs@graphene/CNTs cathode for Li–Se battery was constructed by a CNTs@graphene network and a CNTs interlayer. CNTs were first integrated with graphene to form a three-dimensional(3D) framework and work together as a conductive matrix for Se confinement. The optimized composite cathode delivers a high initial capacity of 575 mAh·g^-1 at 0.5 A·g^-1 and good rate capacity with a retained capacity of 479 mAh·g^-1 at 2.0 A·g^-1(73% of the capacity at 0.2 A·g^-1). CNTs were further served as an interlayer to confine the diffusion of polyselenides by constructing a thin CNTs layer outside the CNTs@graphene network. An improved initial capacity of 616 mAh·g^-1 at 0.5 A·g^-1 is achieved with a retained capacity of 538 mAh·g^-1 after 80 cycles, indicating the effective dual function of CNTs in this novel cathode construction and great application potential for Li–Se battery.展开更多
A nanoporous N-doped reduced graphene oxide(p-N-rGO) was prepared through carbothermal reaction between graphene oxide and ammonium-containing oxometalates as sulfur host for Li-S batteries.The p-N-rGO sheets have a...A nanoporous N-doped reduced graphene oxide(p-N-rGO) was prepared through carbothermal reaction between graphene oxide and ammonium-containing oxometalates as sulfur host for Li-S batteries.The p-N-rGO sheets have abundant nanopores with diameters of 10-40 nm and the nitrogen content is 2.65 at%.When used as sulfur cathode,the obtained p-N-rGO/S composite has a high reversible capacity of 1110mAhg^-1 at 1C rate and stable cycling performance with 781.8 mAhg-1 retained after 110 cycles,much better than those of the rGO/S composite.The enhanced electrochemical performance is ascribed to the rational combination of nanopores and N-doping,which provide efficient contact and wetting with the electrolyte,accommodate volume expansion and immobilize polysulfides during cycling.展开更多
We report a “soft” graphene oxide-polymeric organosulfide nanocomposite with improved pseudocapacitive performance for high-potential(1–2.8 V vs. Li^0/Li~+), high-capacity(278 mAh/g) and stable(500 cycles) l...We report a “soft” graphene oxide-polymeric organosulfide nanocomposite with improved pseudocapacitive performance for high-potential(1–2.8 V vs. Li^0/Li~+), high-capacity(278 mAh/g) and stable(500 cycles) lithium storage.展开更多
基金financially supported by the National Basic Research Program of China(No.2014CB932400)the National Science Foundation of China(Nos.21406161 and 51602220)
文摘A dual functional CNTs@graphene/CNTs cathode for Li–Se battery was constructed by a CNTs@graphene network and a CNTs interlayer. CNTs were first integrated with graphene to form a three-dimensional(3D) framework and work together as a conductive matrix for Se confinement. The optimized composite cathode delivers a high initial capacity of 575 mAh·g^-1 at 0.5 A·g^-1 and good rate capacity with a retained capacity of 479 mAh·g^-1 at 2.0 A·g^-1(73% of the capacity at 0.2 A·g^-1). CNTs were further served as an interlayer to confine the diffusion of polyselenides by constructing a thin CNTs layer outside the CNTs@graphene network. An improved initial capacity of 616 mAh·g^-1 at 0.5 A·g^-1 is achieved with a retained capacity of 538 mAh·g^-1 after 80 cycles, indicating the effective dual function of CNTs in this novel cathode construction and great application potential for Li–Se battery.
基金Financial support from the Research Project of National University of Defense Technology (No. ZDYYjc Yj20140701)
文摘A nanoporous N-doped reduced graphene oxide(p-N-rGO) was prepared through carbothermal reaction between graphene oxide and ammonium-containing oxometalates as sulfur host for Li-S batteries.The p-N-rGO sheets have abundant nanopores with diameters of 10-40 nm and the nitrogen content is 2.65 at%.When used as sulfur cathode,the obtained p-N-rGO/S composite has a high reversible capacity of 1110mAhg^-1 at 1C rate and stable cycling performance with 781.8 mAhg-1 retained after 110 cycles,much better than those of the rGO/S composite.The enhanced electrochemical performance is ascribed to the rational combination of nanopores and N-doping,which provide efficient contact and wetting with the electrolyte,accommodate volume expansion and immobilize polysulfides during cycling.
基金financial support from the ARC Discovery Project (No. DP160103244)the Baosteel Australia Joint Research and Development Centre (No. BA110016)
文摘We report a “soft” graphene oxide-polymeric organosulfide nanocomposite with improved pseudocapacitive performance for high-potential(1–2.8 V vs. Li^0/Li~+), high-capacity(278 mAh/g) and stable(500 cycles) lithium storage.