The application of silicon as ultrahigh capacity electrodes in lithiumion batteries has been limited by a number of mechanical degradation mechanisms including fracture, delamination and plastic ratcheting, as a resul...The application of silicon as ultrahigh capacity electrodes in lithiumion batteries has been limited by a number of mechanical degradation mechanisms including fracture, delamination and plastic ratcheting, as a result of its large volumetric change during lithiation and delithiation. Graphene coating is one feasible technique to mitigate the mechanical degradation of Si anode and improve its conductivity. In this paper, first-principles calculations are performed to study the atomic structure, charge transfer and sliding strength of the interface between lithiated silicon and graphene. Our results show that Li atoms segre- gate at the (lithiated) Si-graphene interface preferentially, donating electrons to graphene and enhancing the interfacial sliding resistance. Moreover, the interfacial cohesion and sliding strength can be further enhanced by introducing single-vacancy defects into graphene. These findings provide insights that can guide the design of stable and efficient anodes of silicon/graphene hybrids for energy storage applications.展开更多
基金support by U.S. Department of Energy through DOE EPSCo R Implementation Grant No. DESC0007074by the Assistant Secretary for Energy Efficiency and Renewable Energy, Vehicle Technologies Office of the U.S. Department of Energy under Contract No. DE-AC0205CH11231+2 种基金Subcontract No 7056410 under the Batteries for Advanced Transportation Technologies (BATT) Programfinancial support from the State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, through Grant No. MCMS-0414G01financial support from the National Basic Research of China through Grant No. 2015CB932500.
文摘The application of silicon as ultrahigh capacity electrodes in lithiumion batteries has been limited by a number of mechanical degradation mechanisms including fracture, delamination and plastic ratcheting, as a result of its large volumetric change during lithiation and delithiation. Graphene coating is one feasible technique to mitigate the mechanical degradation of Si anode and improve its conductivity. In this paper, first-principles calculations are performed to study the atomic structure, charge transfer and sliding strength of the interface between lithiated silicon and graphene. Our results show that Li atoms segre- gate at the (lithiated) Si-graphene interface preferentially, donating electrons to graphene and enhancing the interfacial sliding resistance. Moreover, the interfacial cohesion and sliding strength can be further enhanced by introducing single-vacancy defects into graphene. These findings provide insights that can guide the design of stable and efficient anodes of silicon/graphene hybrids for energy storage applications.