期刊文献+
共找到698篇文章
< 1 2 35 >
每页显示 20 50 100
Flexible piezoresistive pressure sensor based on a graphene-carbon nanotube-polydimethylsiloxane composite
1
作者 Huifen Wei Xiangmeng Li +2 位作者 Fangping Yao Xinyu Feng Xijing Zhu 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第3期35-44,共10页
Flexible sensors are used widely in wearable devices, specifically flexible piezoresistive sensors, which are common and easy to manipulate.However, fabricating such sensors is expensive and complex, so proposed here ... Flexible sensors are used widely in wearable devices, specifically flexible piezoresistive sensors, which are common and easy to manipulate.However, fabricating such sensors is expensive and complex, so proposed here is a simple fabrication approach involving a sensor containing microstructures replicated from a sandpaper template onto which polydimethylsiloxane containing a mixture of graphene and carbon nanotubes is spin coated. The surface morphologies of three versions of the sensor made using different grades of sandpaper are observed, and the corresponding pressure sensitivities and linearity and hysteresis characteristics are assessed and analyzed. The results show that the sensor made using 80-mesh sandpaper has the best sensing performance. Its sensitivity is 0.341 kPa-1in the loading range of 0–1.6 kPa, it responds to small external loading of 100 Pa with a resistance change of 10%, its loading and unloading response times are 0.126 and 0.2 s, respectively,and its hysteresis characteristic is ~7%, indicating that the sensor has high sensitivity, fast response, and good stability. Thus, the presented piezoresistive sensor is promising for practical applications in flexible wearable electronics. 展开更多
关键词 Piezoresistive sensor Flexible sensor graphene Carbon nanotube Polymer composite Microstructure
下载PDF
Fabrication of a novel electrochemical sensor based on MnFe_(2)O_(4)/graphene modified glassy carbon electrode for the sensitive detection of bisphenol A
2
作者 GAO Si-lei TANG Jian-she +1 位作者 XIANG Li LONG Jin-wei 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1856-1869,共14页
Manganese ferrite(MnFe_(2)O_(4))has the advantages of simple preparation,high resistivity,and high crystal symmetry.Herein,we have developed an electrochemical sensor utilizing graphene and MnFe_(2)O_(4) nanocomposite... Manganese ferrite(MnFe_(2)O_(4))has the advantages of simple preparation,high resistivity,and high crystal symmetry.Herein,we have developed an electrochemical sensor utilizing graphene and MnFe_(2)O_(4) nanocomposites modified glassy carbon electrode(GCE),which is very efficient and sensitive to detect bisphenol A(BPA).MnFe_(2)O_(4)/graphene(GR)was synthesized by immobilizing the MnFe_(2)O_(4) microspheres on the graphene nanosheets via a simple one-pot solvothermal method.The morphology and structure of the MnFe_(2)O_(4)/GR nanocomposite have been characterized through scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FT-IR),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).In addition,electrochemical properties of the modified materials are comparably explored by means of cyclic voltammetry(CV),electrochemical impedance spectroscopy(EIS)and differential pulse voltammetry(DPV).Under the optimal conditions,the proposed electrochemical sensor for the detection of BPA has a linear range of 0.8-400μmol/L and a detection limit of 0.0235μmol/L(S/N=3)with high sensitivity,good selectivity and high stability.In addition,the proposed sensor was used to measure the content of BPA in real water samples with a recovery rate of 97.94%-104.56%.At present,the synthesis of MnFe_(2)O_(4)/GR provides more opportunities for the electrochemical detection of BPA in practical applications. 展开更多
关键词 MnFe_(2)O_(4) graphene electrochemical sensor bisphenol A
下载PDF
Advances in Graphene‑Based Electrode for Triboelectric Nanogenerator
3
作者 Bin Xie Yuanhui Guo +7 位作者 Yun Chen Hao Zhang Jiawei Xiao Maoxiang Hou Huilong Liu Li Ma Xin Chen Chingping Wong 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期378-403,共26页
With the continuous development of wearable electronics,wireless sensor networks and other micro-electronic devices,there is an increasingly urgent need for miniature,flexible and efficient nanopower generation techno... With the continuous development of wearable electronics,wireless sensor networks and other micro-electronic devices,there is an increasingly urgent need for miniature,flexible and efficient nanopower generation technology.Triboelectric nanogenerator(TENG)technology can convert small mechanical energy into electricity,which is expected to address this problem.As the core component of TENG,the choice of electrode materials significantly affects its performance.Traditional metal electrode materials often suffer from problems such as durability,which limits the further application of TENG.Graphene,as a novel electrode material,shows excellent prospects for application in TENG owing to its unique structure and excellent electrical properties.This review systematically summarizes the recent research progress and application prospects of TENGs based on graphene electrodes.Various precision processing methods of graphene electrodes are introduced,and the applications of graphene electrode-based TENGs in various scenarios as well as the enhancement of graphene electrodes for TENG performance are discussed.In addition,the future development of graphene electrode-based TENGs is also prospectively discussed,aiming to promote the continuous advancement of graphene electrode-based TENGs. 展开更多
关键词 Triboelectric nanogenerator Precision processing graphene electrode Self-powered sensor
下载PDF
Direct fabrication of flexible tensile sensors enabled by polariton energy transfer based on graphene nanosheet films 被引量:2
4
作者 Xi Zhang Junchi Ma +7 位作者 Wenhao Huang Jichen Zhang Chaoyang Lyu Yu Zhang Bo Wen Xin Wang Jing Ye Dongfeng Diao 《Nanotechnology and Precision Engineering》 CAS CSCD 2023年第1期1-11,共11页
A fundamental problem in the direct manufacturing of flexible devices is the low melting temperature of flexible substrates,which hinders the development of flexible electronics.Proposed here is an electron-cyclotron-... A fundamental problem in the direct manufacturing of flexible devices is the low melting temperature of flexible substrates,which hinders the development of flexible electronics.Proposed here is an electron-cyclotron-resonance sputtering system that can batch-fabricate devices directly on flexible substrates under a low temperature by virtue of the polariton energy transfer between the plasma and the material.Flexible graphene nanosheet-embedded carbon(F-GNEC)films are manufactured directly on polyimide,polyethylene terephthalate,and polydimethylsiloxane,and how the substrate bias(electron energy),microwave power(plasma flux and energy),and magnetic field(electron flux)affect the nanostructure of the F-GNEC films is investigated,indicating that electron energy and flux contribute to the formation of standing graphene nanosheets in the film.The films have good uniformity of distribution in a large size(17 mm×17 mm),and tensile and angle sensors with a high gauge factor(0.92)and fast response(50 ms)for a machine hand are obtained by virtue of the unique nanostructure of the F-GNEC film.This work sheds light on the quantum manufacturing of carbon sensors and its applications for intelligent machine hands and virtual-reality technology. 展开更多
关键词 Direct flexible fabrication graphene nanosheets film Polariton energy transfer Flexible sensor Quantum manufacturing
下载PDF
Recent progress in graphene-based wearable piezoresistive sensors:From 1D to 3D device geometries 被引量:1
5
作者 Kai-Yue Chen Yun-Ting Xu +3 位作者 Yang Zhao Jun-Kai Li Xiao-Peng Wang Liang-Ti Qu 《Nano Materials Science》 EI CAS CSCD 2023年第3期247-264,共18页
Electronic skin and flexible wearable devices have attracted tremendous attention in the fields of human-machine interaction,energy storage,and intelligent robots.As a prevailing flexible pressure sensor with high per... Electronic skin and flexible wearable devices have attracted tremendous attention in the fields of human-machine interaction,energy storage,and intelligent robots.As a prevailing flexible pressure sensor with high performance,the piezoresistive sensor is believed to be one of the fundamental components of intelligent tactile skin.Furthermore,graphene can be used as a building block for highly flexible and wearable piezoresistive sensors owing to its light weight,high electrical conductivity,and excellent mechanical.This review provides a comprehensive summary of recent advances in graphene-based piezoresistive sensors,which we systematically classify as various configurations including one-dimensional fiber,two-dimensional thin film,and threedimensional foam geometries,followed by examples of practical applications for health monitoring,human motion sensing,multifunctional sensing,and system integration.We also present the sensing mechanisms and evaluation parameters of piezoresistive sensors.This review delivers broad insights on existing graphene-based piezoresistive sensors and challenges for the future generation of high-performance,multifunctional sensors in various applications. 展开更多
关键词 Piezoresistive sensors graphene Electronic skin Flexible and wearable devices
下载PDF
Self-Healing MXene-and Graphene-Based Composites:Properties and Applications 被引量:5
6
作者 Atefeh Zarepour Sepideh Ahmadi +2 位作者 Navid Rabiee Ali Zarrabi Siavash Iravani 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期165-192,共28页
Today,self-healing graphene-and MXene-based composites have attracted researchers due to the increase in durability as well as the cost reduction in long-time applications.Different studies have focused on designing n... Today,self-healing graphene-and MXene-based composites have attracted researchers due to the increase in durability as well as the cost reduction in long-time applications.Different studies have focused on designing novel self-healing graphene-and MXenebased composites with enhanced sensitivity,stretchability,and flexibility as well as improved electrical conductivity,healing efficacy,mechanical properties,and energy conversion efficacy.These composites with self-healing properties can be employed in the field of wearable sensors,supercapacitors,anticorrosive coatings,electromagnetic interference shielding,electronic-skin,soft robotics,etc.However,it appears that more explorations are still needed to achieve composites with excellent arbitrary shape adaptability,suitable adhesiveness,ideal durability,high stretchability,immediate self-healing responsibility,and outstanding electromagnetic features.Besides,optimizing reaction/synthesis conditions and finding suitable strategies for functionalization/modification are crucial aspects that should be comprehensively investigated.MXenes and graphene exhibited superior electrochemical properties with abundant surface terminations and great surface area,which are important to evolve biomedical and sensing applications.However,flexibility and stretchability are important criteria that need to be improved for their future applications.Herein,the most recent advancements pertaining to the applications and properties of self-healing graphene-and MXene-based composites are deliberated,focusing on crucial challenges and future perspectives. 展开更多
关键词 MXenes graphene Self-healing materials Electromagnetic interference shielding Wearable sensors
下载PDF
The recent progress of laser-induced graphene based device applications 被引量:3
7
作者 Liqiang Zhang Ziqian Zhou +1 位作者 Xiaosong Hu Liaoyong Wen 《Journal of Semiconductors》 EI CAS CSCD 2023年第3期29-42,共14页
Laser writing is a fast and efficient technology that can produce graphene with a high surface area,whereas laser-induced graphene(LIG)has been widely used in both physics and chemical device application.It is necessa... Laser writing is a fast and efficient technology that can produce graphene with a high surface area,whereas laser-induced graphene(LIG)has been widely used in both physics and chemical device application.It is necessary to update this important progress because it may provide a clue to consider the current challenges and possible future directions.In this review,the basic principles of LIG fabrication are first briefly described for a detailed understanding of the lasing process.Sub-sequently,we summarize the physical device applications of LIGs and describe their advantages,including flexible electronics and energy harvesting.Then,chemical device applications are categorized into chemical sensors,supercapacitors,batteries,and electrocatalysis,and a detailed interpretation is provided.Finally,we present our vision of future developments and challenges in this exciting research field. 展开更多
关键词 laser-induced graphene flexible electronics energy harvesting chemical sensors SUPERCAPACITORS ELECTROCATALYSIS
下载PDF
A Review on Graphene-Based Gas/Vapor Sensors with Unique Properties and Potential Applications 被引量:20
8
作者 Tao Wang Da Huang +7 位作者 Zhi Yang Shusheng Xu Guili He Xiaolin Li Nantao Hu Guilin Yin Dannong He Liying Zhang 《Nano-Micro Letters》 SCIE EI CAS 2016年第2期95-119,共25页
Graphene-based gas/vapor sensors have attracted much attention in recent years due to their variety of structures, unique sensing performances, room-temperature working conditions, and tremendous application prospects... Graphene-based gas/vapor sensors have attracted much attention in recent years due to their variety of structures, unique sensing performances, room-temperature working conditions, and tremendous application prospects, etc.Herein, we summarize recent advantages in graphene preparation, sensor construction, and sensing properties of various graphene-based gas/vapor sensors, such as NH_3, NO_2, H_2, CO, SO_2, H_2S, as well as vapor of volatile organic compounds.The detection mechanisms pertaining to various gases are also discussed. In conclusion part, some existing problems which may hinder the sensor applications are presented. Several possible methods to solve these problems are proposed, for example, conceived solutions, hybrid nanostructures, multiple sensor arrays, and new recognition algorithm. 展开更多
关键词 graphene Gas/Vapor sensor CHEMIRESISTOR Detection mechanism
下载PDF
Graphene Nanostructure-Based Tactile Sensors for Electronic Skin Applications 被引量:8
9
作者 Pei Miao Jian Wang +3 位作者 Congcong Zhang Mingyuan Sun Shanshan Cheng Hong Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期239-275,共37页
Skin is the largest organ of the human body and can perceive and respond to complex environmental stimulations.Recently,the development of electronic skin(E-skin)for the mimicry of the human sensory system has drawn g... Skin is the largest organ of the human body and can perceive and respond to complex environmental stimulations.Recently,the development of electronic skin(E-skin)for the mimicry of the human sensory system has drawn great attention due to its potential applications in wearable human health monitoring and care systems,advanced robotics,artificial intelligence,and human-machine interfaces.Tactile sense is one of the most important senses of human skin that has attracted special attention.The ability to obtain unique functions using diverse assembly processible methods has rapidly advanced the use of graphene,the most celebrated two-dimensional material,in electronic tactile sensing devices.With a special emphasis on the works achieved since 2016,this review begins with the assembly and modification of graphene materials and then critically and comprehensively summarizes the most advanced material assembly methods,device construction technologies and signal characterization approaches in pressure and strain detection based on graphene and its derivative materials.This review emphasizes on:(1)the underlying working principles of these types of sensors and the unique roles and advantages of graphene materials;(2)state-of-the-art protocols recently developed for high-performance tactile sensing,including representative examples;and(3)perspectives and current challenges for graphene-based tactile sensors in E-skin applications.A summary of these cutting-edge developments intends to provide readers with a deep understanding of the future design of high-quality tactile sensing devices and paves a path for their future commercial applications in the field of E-skin. 展开更多
关键词 graphene DERIVATIVES TACTILE sensor ELECTRONIC SKIN Assembly
下载PDF
Highly Concentrated,Conductive,Defect-free Graphene Ink for Screen-Printed Sensor Application 被引量:6
10
作者 Dong Seok Kim Jae-Min Jeong +3 位作者 Hong Jun Park Yeong Kyun Kim Kyoung G.Lee Bong Gill Choi 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第6期17-30,共14页
Conductive inks based on graphene materials have received significant attention for the fabrication of a wide range of printed and flexible devices.However,the application of graphene fillers is limited by their restr... Conductive inks based on graphene materials have received significant attention for the fabrication of a wide range of printed and flexible devices.However,the application of graphene fillers is limited by their restricted mass production and the low concentration of their suspensions.In this study,a highly concentrated and conductive ink based on defect-free graphene was developed by a scalable fluid dynamics process.A high shear exfoliation and mixing process enabled the production of graphene at a high concentration of 47.5 mg mL^(−1)for graphene ink.The screen-printed graphene conductor exhibits a high electrical conductivity of 1.49×10^(4)S m^(−1)and maintains high conductivity under mechanical bending,compressing,and fatigue tests.Based on the as-prepared graphene ink,a printed electrochemical sodium ion(Na^(+))sensor that shows high potentiometric sensing performance was fabricated.Further,by integrating a wireless electronic module,a prototype Na^(+)-sensing watch is demonstrated for the real-time monitoring of the sodium ion concentration in human sweat during the indoor exercise of a volunteer.The scalable and efficient procedure for the preparation of graphene ink presented in this work is very promising for the low-cost,reproducible,and large-scale printing of flexible and wearable electronic devices. 展开更多
关键词 graphene ink Fluid dynamics Screen printing Ion sensor Real-time monitoring
下载PDF
Laser-Etched Stretchable Graphene-Polymer Composite Array for Sensitive Strain and Viscosity Sensors 被引量:4
11
作者 Yuting Jiang Yang Wang +4 位作者 Heting Wu Yuanhao Wang Renyun Zhang H?kan Olin Ya Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期709-719,共11页
The ability to control surface wettability and liquid spreading on textured surfaces is of interest for extensive applications.Soft materials have prominent advantages for producing the smart coatings with multiple fu... The ability to control surface wettability and liquid spreading on textured surfaces is of interest for extensive applications.Soft materials have prominent advantages for producing the smart coatings with multiple functions for strain sensing.Here,we report a simple method to prepare flexible hydrophobic smart coatings using graphene-polymer films.Arrays of individual patterns in the films were created by laser engraving and controlled the contact angle of small drops by pinning the contact lines in a horizontal tensile range of 0-200%.By means of experiments and model,we demonstrate that the ductility of drops is relied on the height-to-spacing ratio of the individual pattern and the intrinsic contact angle.Moreover,the change of drop size was utilized to measure the applied strain and liquid viscosity,enabling a strain sensitivity as high as 1068μm2/%.The proposed laser-etched stretchable graphene-polymer composite has potential applications in DNA microarrays,biological assays,soft robots,and so on. 展开更多
关键词 HYDROPHOBIC smart coatings Flexible sensors Soft materials Controlled DROPS graphene
下载PDF
Development of an Ultra-Sensitive and Flexible Piezoresistive Flow Sensor Using Vertical Graphene Nanosheets 被引量:3
12
作者 Sajad Abolpour Moshizi Shohreh Azadi +4 位作者 Andrew Belford Amir Razmjou Shuying Wu Zhao Jun Han Mohsen Asadnia 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第9期26-43,共18页
This paper suggests development of a flexible,lightweight,and ultra-sensitive piezoresistive flow sensor based on vertical graphene nanosheets(VGNs) with a mazelike structure.The sensor was thoroughly characterized fo... This paper suggests development of a flexible,lightweight,and ultra-sensitive piezoresistive flow sensor based on vertical graphene nanosheets(VGNs) with a mazelike structure.The sensor was thoroughly characterized for steady-state and oscillatory water flow monitoring applications.The results demonstrated a high sensitivity(103.91 mV(mm/s)-1) and a very low-velocity detection threshold(1.127 mm s-1) in steady-state flow monitoring.As one of many potential applications,we demonstrated that the proposed VGNs/PDMS flow sensor can closely mimic the vestibular hair cell sensors housed inside the semicircular canals(SCCs).As a proof of concept,magnetic resonance imaging of the human inner ear was conducted to measure the dimensions of the SCCs and to develop a 3D printed lateral semicircular canal(LSCC).The sensor was embedded into the artificial LSCC and tested for various physiological movements.The obtained results indicate that the flow sensor is able to distinguish minute changes in the rotational axis physical geometry,frequency,and amplitude.The success of this study paves the way for extending this technology not only to vestibular organ prosthesis but also to other applications such as blood/urine flow monitoring,intravenous therapy(Ⅳ),water leakage monitoring,and unmanned underwater robots through incorporation of the appropriate packaging of devices. 展开更多
关键词 Vertical graphene nanosheets Artificial vestibular system Bioinspired sensors Piezoresistive sensors
下载PDF
Flexible and electrically robust graphene-based nanocomposite paper with hierarchical microstructures for multifunctional wearable devices
13
作者 Zhen-Hua Tang Wei-Bin Zhu +4 位作者 Jun-Zhang Chen Yuan-Qing Li Pei Huang Kin Liao Shao-Yun Fu 《Nano Materials Science》 EI CAS CSCD 2023年第3期319-328,共10页
Multifunctional and flexible wearable devices play a crucial role in a wide range of applications,such as heath monitoring,intelligent skins,and human-machine interactions.Developing flexible and conductive materials ... Multifunctional and flexible wearable devices play a crucial role in a wide range of applications,such as heath monitoring,intelligent skins,and human-machine interactions.Developing flexible and conductive materials for multifunctional wearable devices with low-cost and high efficiency methods are highly desirable.Here,a conductive graphene/microsphere/bamboo fiber(GMB)nanocomposite paper with hierarchical surface microstructures is successfully fabricated through a simple vacuum-assisted filtration followed by thermo-foaming process.The as-prepared microstructured GMB nanocomposite paper exhibits not only a high volume electrical conductivity of~45 S/m but also an excellent electrical stability(i.e.,relative changes in resistance are less than 3%under stretching,folding,and compressing loadings)due to its unique structure features.With this microstructured nanocomposite paper as active sensing layer,microstructured pressure sensors with a high sensitivity(-4 kPa^(-1)),a wide sensing range(0–5 kPa),and a rapid response time(about 140 ms)are realized.In addition,benefitting from the outstanding electrical stability and mechanical flexibility,the microstructured nanocomposite paper is further demonstrated as a low-voltage Joule heating device.The surface temperature of the microstructured nanocomposite paper rapidly reaches over 80℃ when applying a relatively low voltage of 7 V,indicating its potential in human thermotherapy and thermal management. 展开更多
关键词 graphene Bamboo fibers MICROSPHERES Pressure sensors Joule heating devices
下载PDF
Axial control for nonlinear resonances of electrostatically actuated nanobeam with graphene sensor 被引量:1
14
作者 Canchang LIU Qian DING +2 位作者 Qingmei GONG Chicheng MA Shuchang YUE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第4期527-542,共16页
The nonlinear resonance response of an electrostatically actuated nanobeam is studied over the near-half natural frequency with an axial capacitor controller. A graphene sensor deformed by the vibrations of the nanobe... The nonlinear resonance response of an electrostatically actuated nanobeam is studied over the near-half natural frequency with an axial capacitor controller. A graphene sensor deformed by the vibrations of the nanobeam is used to produce the voltage signal. The voltage of the vibration graphene sensor is used as a control signal input to a closed- loop circuit to mitigate the nonlinear vibration of the nanobeam. An axial control force produced by the axial capacitor controller can transform the frequency-amplitude curves from nonlinear to linear. The necessary and sufficient conditions for guaranteeing the system stability and a saddle-node bifurcation are studied. The numerical simulations are conducted for uniform nanobeams. The nonlinear terms of the vibration system can be transformed into linear ones by applying the critical control voltage to the system. The nonlinear vibration phenomena can be avoided, and the vibration amplitude is mitigated evidently with the axial capacitor controller. 展开更多
关键词 graphene sensor nanobeam nonlinear vibration electrostatic force
下载PDF
Review of graphene-based strain sensors 被引量:1
15
作者 赵静 张广宇 时东霞 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第5期35-43,共9页
In this paper, we review various types of graphene-based strain sensors. Graphene is a monolayer of carbon atoms, which exhibits prominent electrical and mechanical properties and can be a good candidate in compact st... In this paper, we review various types of graphene-based strain sensors. Graphene is a monolayer of carbon atoms, which exhibits prominent electrical and mechanical properties and can be a good candidate in compact strain sensor ap- plications. However, a perfect graphene is robust and has a low piezoresistive sensitivity. So scientists have been driven to increase the sensitivity using different kinds of methods since the first graphene-based strain sensor was reported. We give a comprehensive review of graphene-based strain sensors with different structures and mechanisms. It is obvious that graphene offers some advantages and has potential for the strain sensor application in the near future. 展开更多
关键词 graphene strain sensor gauge factor
下载PDF
Highly Sensitive Flexible Pressure Sensors based on Graphene/Graphene Scrolls Multilayer Hybrid Films 被引量:2
16
作者 Yi-heng Zhai Tao Wang +3 位作者 Zhi-kai Qi Xiang-hua Kong Hang-xun Xu Heng-xing Ji 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2020年第3期365-370,I0005-I0010,I0003,共7页
In recent years,flexible pressure sensors have attracted much attention owing to their potential applications in motion detection and wearable electronics.As a result,important innovations have been reported in both c... In recent years,flexible pressure sensors have attracted much attention owing to their potential applications in motion detection and wearable electronics.As a result,important innovations have been reported in both conductive materials and the underlying substrates,which are the two crucial components of a pressure sensor.1D materials like nanowires are being widely used as the conductive materials in flexible pressure sensors,but such sensors usually exhibit low performances mainly due to the lack of strong interfacial interactions between the substrates and 1D materials.In this paper,we report the use of graphene/graphene scrolls hybrid multilayers films as the conductive material and a microstructured polydimethylsiloxane substrate using Epipremnum aureum leaf as the template to fabricate highly sensitive pressure sensors.The 2D structure of graphene allows to strongly anchor the scrolls to ensure the improved adhesion between the highly conductive hybrid films and the patterned substrate.We attribute the increased sensitivity(3.5 k Pa^-1),fast response time(<50 ms),and the good reproducibility during 1000 loading-unloading cycles of the pressure sensor to the synergistic effect between the 1D scrolls and 2D graphene films.Test results demonstrate that these sensors are promising for electronic skins and motion detection applications. 展开更多
关键词 Pressure sensor graphene scrolls Hybrid films Electronic skins
下载PDF
Titanium dioxide-graphene composite electrochemical sensor for detection of hexavalent chromium 被引量:1
17
作者 Natpichan Pienutsa Krittamet Yannawibut +2 位作者 Jetthana Phattharaphongmanee Oukrit Thonganantakul Sira Srinives 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第3期529-535,共7页
Hexavalent chromium(Cr(VI))compound is useful to various industries but is toxic and carcinogenic.In this research work,we fab-ricate an amperometric sensor for the determination of Cr(VI),using a titanium dioxide(TiO... Hexavalent chromium(Cr(VI))compound is useful to various industries but is toxic and carcinogenic.In this research work,we fab-ricate an amperometric sensor for the determination of Cr(VI),using a titanium dioxide(TiO2)-reduced graphene oxide(rGO)composite as the sensing element.The composite was synthesized following sol−gel chemistry,yielding TiO2 nanoparticles of~50 nm in size,immobilized on chemically exfoliated rGO sheets.The composite was employed in a 3-electrode electrochemical cell and operated in an amperometric mode,exhibiting good responses to the 50 to 500 ppb Cr(VI).Our best result from pH 3 Mcilvane’s buffer medium reveals the sensitivity of 9.12×10−4 ppb−1 and a detection limit of 6 ppb with no signal interference from 200 ppm Ca(II),150 ppm Mg(II),and 50 ppb Pb(II).The excellent results of the TiO2-rGO sensor can be attributed to synergic effects between TiO2 and rGO,resulting from the presence of n-p heterojunctions and the formation of the TiO2 nanoparticles on rGO. 展开更多
关键词 PHOTOCATALYST electrochemical sensor hexavalent chromium graphene
下载PDF
Laser-induced porous graphene on Polyimide/PDMS composites andits kirigami-inspired strain sensor 被引量:2
18
作者 Hao Wang Zifeng Zhao +1 位作者 Panpan Liu Xiaogang Guo 《Theoretical & Applied Mechanics Letters》 CSCD 2021年第2期110-114,共5页
The laser-induced porous graphene(LIG)prepared in a straightforward fabrication method is presented,and its applications in stretchable strain sensors to detect the applied strain are also explored.The LIGformed on th... The laser-induced porous graphene(LIG)prepared in a straightforward fabrication method is presented,and its applications in stretchable strain sensors to detect the applied strain are also explored.The LIGformed on the polyimide/polydimethylsiloxane(PI/PDMS)composite exhibits a naturally high stretchabil-ity(over 30%),bypassing the transfer printing process compared to the one prepared by laser scribing onPI films.The PI/PDMS composite with LIG shows tunable mechanical and electronic performances withdifferent PI particle concentrations in PDMS.The good cyclic stability and almost linear response of theprepared LIG’s resistance with respect to tensile strain provide its access to wearable electronics.To im-prove the PDMS/PI composite stretchability,we designed and optimized a kirigami-inspired strain sensorwith LIG on the top surface,dramatically increasing the maximum strain value that in linear response toapplied strain from 3%to 79%. 展开更多
关键词 Laser-induced porous graphene Polyimide(PI)/PDMS composite kirigami-inspired strain sensor
下载PDF
Hybrid Reduced Graphene Oxide with Special Magnetoresistance for Wireless Magnetic Field Sensor 被引量:1
19
作者 Songlin Yang Mingyan Tan +3 位作者 Tianqi Yu Xu Li Xianbin Wang Jin Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第5期177-190,共14页
Very few materials show large magnetoresistance(MR)under a low magnetic field at room temperature,which causes the barrier to the development of magnetic field sensors for detecting low-level electromagnetic radiation... Very few materials show large magnetoresistance(MR)under a low magnetic field at room temperature,which causes the barrier to the development of magnetic field sensors for detecting low-level electromagnetic radiation in real-time.Here,a hybrid reduced graphene oxide(rGO)-based magnetic field sensor is produced by in situ deposition of FeCo nanoparticles(NPs)on reduced graphene oxide(rGO).Special quantum magnetoresistance(MR)of the hybrid rGO is observed,which unveils that Abrikosov's quantum model for layered materials can occur in hybrid rGO;meanwhile,the MR value can be tunable by adjusting the particle density of FeCo NPs on rGO nanosheets.Very high MR value up to 21.02±5.74%at 10 kOe at room temperature is achieved,and the average increasing rate of resistance per kOe is up to 0.9282ΩkOe^-1.In this paper,we demonstrate that the hybrid rGO-based magnetic field sensor can be embedded in a wireless system for real-time detection of low-level electromagnetic radiation caused by a working mobile phone.We believe that the two-dimensional nanomaterials with controllable MR can be integrated with a wireless system for the future connected society. 展开更多
关键词 Large MAGNETORESISTANCE MAGNETIC NANOCRYSTALS REDUCED graphene OXIDE WIRELESS MAGNETIC field sensor
下载PDF
ZrO_2/Graphene Nanocomposites Synthesized in Supercritical Fluids: Highly Efficient Chemical Sensor Material for Ethanol
20
作者 LI Jun LI Yue +5 位作者 ZHANG Dawei XIA Dan CHENG Hao LIU Li HUANG Yudong JIANG Zaixing 《矿物学报》 CAS CSCD 北大核心 2013年第S1期40-40,共1页
ZrO2/Graphene nanocomposites are fabricated from graphene oxide by one-step, green, facile and low-cost SCCO2 method. The as-prepared nanocomposites are characterized by means of X-ray photoelectron, transmission elec... ZrO2/Graphene nanocomposites are fabricated from graphene oxide by one-step, green, facile and low-cost SCCO2 method. The as-prepared nanocomposites are characterized by means of X-ray photoelectron, transmission electron microscopy and catalytic chemiluminescence measurement. The ZrO2 nanoparticles with size of several nanometers are uniformly coated on the graphene surface. The chemiluminescence characteristic to ethanol of the as-prepared nanocomposite paper is also investigated. The nanocomposite paper obtained displays high catalytic chemiluminescence sensitivity and highly selectivity to the ethanol gas. This study provides a facile, green and low-cost route to prepare nanoscopic gas sensing devices with application in safe protection, food fermentation, medical process and traffic safe. 展开更多
关键词 NANOCOMPOSITES SYNTHESIZED ZrO2/graphene CHEMICAL sensor material for ETHANOL
下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部