Selective oxidation of glycerol is a hot topic.Increased biodiesel production has led to glycerol oxidation over Au- and Pt-based catalysts being widely studied.However,Pt catalysts suffer from deactivation because of...Selective oxidation of glycerol is a hot topic.Increased biodiesel production has led to glycerol oxidation over Au- and Pt-based catalysts being widely studied.However,Pt catalysts suffer from deactivation because of weak metal-support interactions.In this study,multi-walled carbon nanotube(MWCNTs)-pillared nitrogen-doped graphene(NG) was prepared by direct pyrolysis of melamine on MWCNTs,and the synthesized NG-MWCNT composite was used as the support for Pt.Characterization results showed that the surface area(173 m^2/g) and pore volume of the NG-MWCNT composite were greater than those of bare MWCNTs and the separated melamine pyrolysis product(CH_x).Pt(1.4±0.4 nm) dispersion on the NG-MWCNTs was favorable and the Pt/NG-MWCNT catalyst was highly active and selective in the oxidation of glycerol to glyceric acid(GLYA) in base-free aqueous solution.For example,the conversion of glycerol reached 64.4% with a GLYA selectivity of 81.0%,whereas the conversions of glycerol over Pt/MWCNTs and Pt/CN_x were 29.0% and 31.6%,respectively.The unique catalytic activity of the Pt/NG-MWCNTs is attributed to well-dispersed Pt clusters on the NG-MWCNTs and the electron-donating effect of the nitrogen dopant in the NG-MWCNTs.展开更多
Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology r...Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology regulation, and heterojunction construction strategies to synthesize N-GQD/N-doped TiO_(2)/P-doped porous hollow g-C_(3)N_(4) nanotube (PCN) composite photocatalysts (denoted as G-TPCN). The optimal sample (G-TPCN doped with 0.1wt% N-GQD, denoted as 0.1% G-TPCN) exhibits significantly enhanced photoabsorption, which is attributed to the change in bandgap caused by elemental doping (P and N), the improved light-harvesting resulting from the tube structure, and the upconversion effect of N-GQDs. In addition, the internal charge separation and transfer capability of0.1% G-TPCN are dramatically boosted, and its carrier concentration is 3.7, 2.3, and 1.9 times that of N-TiO_(2), PCN, and N-TiO_(2)/PCN(TPCN-1), respectively. This phenomenon is attributed to the formation of Z-scheme heterojunction between N-TiO_(2) and PCNs, the excellent electron conduction ability of N-GQDs, and the short transfer distance caused by the porous nanotube structure. Compared with those of N-TiO_(2), PCNs, and TPCN-1, the H2 production activity of 0.1%G-TPCN under visible light is enhanced by 12.4, 2.3, and 1.4times, respectively, and its ciprofloxacin (CIP) degradation rate is increased by 7.9, 5.7, and 2.9 times, respectively. The optimized performance benefits from excellent photoresponsiveness and improved carrier separation and migration efficiencies. Finally, the photocatalytic mechanism of 0.1% G-TPCN and five possible degradation pathways of CIP are proposed. This study clarifies the mechanism of multiple modification strategies to synergistically improve the photocatalytic performance of 0.1% G-TPCN and provides a potential strategy for rationally designing novel photocatalysts for environmental remediation and solar energy conversion.展开更多
Flexible sensors are used widely in wearable devices, specifically flexible piezoresistive sensors, which are common and easy to manipulate.However, fabricating such sensors is expensive and complex, so proposed here ...Flexible sensors are used widely in wearable devices, specifically flexible piezoresistive sensors, which are common and easy to manipulate.However, fabricating such sensors is expensive and complex, so proposed here is a simple fabrication approach involving a sensor containing microstructures replicated from a sandpaper template onto which polydimethylsiloxane containing a mixture of graphene and carbon nanotubes is spin coated. The surface morphologies of three versions of the sensor made using different grades of sandpaper are observed, and the corresponding pressure sensitivities and linearity and hysteresis characteristics are assessed and analyzed. The results show that the sensor made using 80-mesh sandpaper has the best sensing performance. Its sensitivity is 0.341 kPa-1in the loading range of 0–1.6 kPa, it responds to small external loading of 100 Pa with a resistance change of 10%, its loading and unloading response times are 0.126 and 0.2 s, respectively,and its hysteresis characteristic is ~7%, indicating that the sensor has high sensitivity, fast response, and good stability. Thus, the presented piezoresistive sensor is promising for practical applications in flexible wearable electronics.展开更多
A 3D nitrogen⁃doped graphene/multi⁃walled carbon nanotube(CS⁃GO⁃NCNT)crosslinked network mate⁃rial was successfully synthesized utilizing chitosan and melamine as carbon and nitrogen sources,concomitant with the incor...A 3D nitrogen⁃doped graphene/multi⁃walled carbon nanotube(CS⁃GO⁃NCNT)crosslinked network mate⁃rial was successfully synthesized utilizing chitosan and melamine as carbon and nitrogen sources,concomitant with the incorporation of multi⁃wall carbon nanotubes and employing freeze drying technology.The material amalgamates the merits of 1D/2D hybrid carbon materials,wherein 1D carbon nanotubes confer robustness and expedited elec⁃tron transport pathways,while 2D graphene sheets facilitate rapid ion migration.Furthermore,the introduction of nitrogen heteroatoms serves to furnish additional active sites for lithium storage.When served as an anode material for lithium⁃ion batteries,the CS⁃GO⁃NCNT electrode delivered a reversible capacity surpassing 500 mAh·g^(-1),mark⁃edly outperforming commercial graphite anodes.Even after 300 cycles at a high current density of 1 A·g^(-1),it remained a reversible capacity of up to 268 mAh·g^(-1).展开更多
Objective This study was aimed to investigate the toxic effects of 3 nanomaterials, i.e. multi-walled carbon nanotubes (MWCNTs), graphene oxide (GO), and reduced graphene oxide (RGO), on zebrafish embryos. Metho...Objective This study was aimed to investigate the toxic effects of 3 nanomaterials, i.e. multi-walled carbon nanotubes (MWCNTs), graphene oxide (GO), and reduced graphene oxide (RGO), on zebrafish embryos. Methods The 2-h post-fertilization (hpf) zebrafish embryos were exposed to MWCNTs, GO, and RGO at different concentrations (1, 5, 10, 50, 100 mg/L) for 96 h. Afterwards, the effects of the 3 nanomateria on spontaneous movement, heart rate, hatching rate, length of larvae, mortality, and malformations Is were evaluated. Results Statistical analysis indicated that RGO significantly inhibited the hatching of zebrafish embryos. Furthermore, RGO and MWCNTs decreased the length of the hatched larvae at 96 hpf. No obvious morphological malformation or mortality was observed in the zebrafish embryos after exposure to the three nanomaterials. Conclusion MWCNTs, GO, and RGO were all toxic to zebrafish embryos to influence embryos hatching and larvae length. Although no obvious morphological malformation and mortality were observed in exposed zebrafish embryos, further studies on the toxicity of the three nanomaterials are still needed.展开更多
With the development of carbon nanomaterials in recent years, there has been an explosion of interests in using carbon nanotubes(CNTs) and graphene for developing new biosensors. It is believed that employing CNTs and...With the development of carbon nanomaterials in recent years, there has been an explosion of interests in using carbon nanotubes(CNTs) and graphene for developing new biosensors. It is believed that employing CNTs and graphene as sensor components can make sensors more reliable, accurate, and fast due to their remarkable properties. Depending on the types of target molecular, different strategies can be applied to design sensor device. This review article summarized the important progress in developing CNT-and graphene-based electrochemical biosensors, field-effect transistor biosensors, and optical biosensors. Although CNTs and graphene have led to some groundbreaking discoveries, challenges are still remained and the state-of-the-art sensors are far from a practical application. As a conclusion, future effort has to be made through an interdisciplinary platform, including materials science, biology, and electric engineering.展开更多
Carbon nanotubes (CNTs) and graphene have attracted great attention since decades ago because of their interesting structure and properties and important application in many areas. They can have high conductivity, hig...Carbon nanotubes (CNTs) and graphene have attracted great attention since decades ago because of their interesting structure and properties and important application in many areas. They can have high conductivity, high specific surface area, high transparency in the visible range and high mechanical flexibility. They have important application in energy conversion systems including solar cells and fuel cells. They have been extensively studied as the transparent electrode and interfacial materials of organic solar cells (OSCs) and perovskite solar cells (PSCs). They are also used as the catalytic counter electrode of dye-sensitized solar cells (DSSCs). In addition, graphene oxide (GO) is exploited as an auxiliary binder of TiO2 paste for the mesoporous TiO2 layer of DSSCs, and GO and functionalized CNTs are adopted as gelators of gel electrolyte for quasi-solid state DSSCs. CNTs and graphene also have important application in fuel cells. They can be used as catalyst support for the oxidation of fuels or oxygen reduction reaction (ORR). CNTs and graphene, particularly when doped with nitrogen, can be directly used metal-free catalysts. This article provides a brief review on the application of CNTs and graphene in OSCs, PSCs, DSSCs and fuel cells.展开更多
High-thermal conductivity enhancement of nanofluid is one of the promising topics of the nanoscience research field. This work reports the experimental study on the preparation of graphene(GN) and multi-walled carbon ...High-thermal conductivity enhancement of nanofluid is one of the promising topics of the nanoscience research field. This work reports the experimental study on the preparation of graphene(GN) and multi-walled carbon nanotubes(MWCNTs) based nanofluids with the assistance of sodium dodecyl benzene sulfonate(SDBS) and sodium dodecyl sulfate(SDS) surfactants, and their thermal behaviors. The present work suggests not a solution, but a solution approach and deduces a new conclusion by trying to resolve the agglomeration problem and improve the dispersibility of nanoparticles in the base fluid. The analysis results of FESEM, thermal conductivity, diffusivity, effusivity and heat transfer coefficient enhancement ratio of nanofluid with surfactants SDS and SDBS expose strong evidence of the dispersing effect of surfactant on the making of nanofluid.展开更多
The effects of the post-deformation annealing on the microstructural evolution of hot rolled Al7075 matrix composites reinforced with CNTs and GNPs were investigated.The multi-pass hot rolling was applied on the stir ...The effects of the post-deformation annealing on the microstructural evolution of hot rolled Al7075 matrix composites reinforced with CNTs and GNPs were investigated.The multi-pass hot rolling was applied on the stir cast samples.Annealing was then applied to the composites at 450℃ for 4 h.Microstructural evolution was examined by SEM,EDS,and EBSD techniques.EBSD data showed that the addition of 0.87 vol.%(GNPs+CNTs)significantly inhibited the occurrence of recrystallization.Also,in the composite with 0.96 vol.%CNTs,recrystallization was partially inhibited.Whereas,in composites with 0.92 vol.%of GNPs,the occurrence of recrystallization through particle stimulated nucleation(PSN)mechanism was significantly accelerated.The volume fraction of recrystallized grains depends significantly on the occurrence of PSN in the presence of reinforcements.The intensity and type of the main components of the texture as well as the FCC fibers depend on the type of reinforcement.展开更多
Electrochemical capacitors, which can store large amount of electrical energy with the capacitance of thousands of Farads, have recently been attracting enormous interest and attention. Carbon nanostructures such as c...Electrochemical capacitors, which can store large amount of electrical energy with the capacitance of thousands of Farads, have recently been attracting enormous interest and attention. Carbon nanostructures such as carbon nanotubes and graphene are considered as the potentially revolutionary energy storage materials due to their excellent properties. This paper is focused on the application of carbon nanostructures in electrochemical capacitors, giving an overview regarding the basic mechanism, design, fabrication and achievement of latest research progresses for electrochemical capacitors based on carbon nanotubes, graphene and their composites. Their current challenges and future prospects are also discussed.展开更多
In this paper, an amperometric acetylcholinesterase(ACh E) biosensor for quantitative determination of carbaryl was developed. Firstly, the poly(diallyldimethy-lammonium chloride)-multi-walled carbon nanotubes-graphen...In this paper, an amperometric acetylcholinesterase(ACh E) biosensor for quantitative determination of carbaryl was developed. Firstly, the poly(diallyldimethy-lammonium chloride)-multi-walled carbon nanotubes-graphene hybrid film was modified onto the glassy carbon electrode(GCE) surface, then ACh E was immobilized onto the modified GCE to fabricate the ACh E biosensor. The morphologies and electrochemistry properties of the prepared ACh E biosensor were investigated by using scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. All variables involved in the preparation process and analytical performance of the biosensor were optimized. Based on the inhibition of pesticides on the ACh E activity, using carbaryl as model compounds, the biosensor exhibited low detection limit, good reproducibility and high stability in a wide range. Moreover, the biosensor can also be used for direct analysis of practical samples, which would provide a new promising tool for pesticide residues analysis.展开更多
Featuring exceptional mechanical and functional performance, MWCNTs and graphene(nano)platelets(GNPs or Gn Ps;each platelet below 10 nm in thickness) have been increasingly used for the development of polymer nanocomp...Featuring exceptional mechanical and functional performance, MWCNTs and graphene(nano)platelets(GNPs or Gn Ps;each platelet below 10 nm in thickness) have been increasingly used for the development of polymer nanocomposites. Since MWCNTs are now cost-effective at US$30 per kg for industrial applications, this work starts by briefly reviewing the disentanglement and surface modification of MWCNTs as well as the properties of the resulting polymer nanocomposites. GNPs can be made through the thermal treatment of graphite intercalation compounds followed by ultrasonication;GNPs would have lower cost yet higher electrical conductivity over 1,400 S cmthan MWCNTs. Through proper surface modification and compounding techniques, both types of fillers can reinforce or toughen polymers and simultaneously add anti-static performance. A high ratio of MWCNTs to GNPs would increase the synergy for polymers. Green, solvent-free systhesis methods are desired for polymer nanocomposites. Perspectives on the limitations, current challenges and future prospects are provided.展开更多
Three-dimensional(3 D) hybrid of nanocarbons is a very promising way to the high-performance design of electrocatalysis materials.However,sp^(3)-like defect structure,a combination of high strength and conduction of g...Three-dimensional(3 D) hybrid of nanocarbons is a very promising way to the high-performance design of electrocatalysis materials.However,sp^(3)-like defect structure,a combination of high strength and conduction of graphene and carbon nanotubes(CNTs) is rarely reported.Herein,3 D neural-like hybrids of graphene(from reduced graphene oxide) and carbon nanotubes(CNTs) have been integrated via sp^(3)-like defect structure by a hydrothermal approach.The sp^(3)-like defect structure endows 3 D nanocarbon hybrids with an enhanced carrier transfer,high structural stability,and electrocatalytic durability.The neural-like structure is shown to demonstrate a cascade effect of charges and significant performances regarding bio-electrocatalysis and lithium-sulfur energy storage.The concept and mechanism of "sp^(3)-like defect structure" are proposed at an atomic/nanoscale to clarify the generation of rational structure as well as the cascade electron transfer.展开更多
In the present work, Dye Sensitized Solar Cells (DSSCs) have been fabricated by utilizing a dense layer of photoelctrode cadmium sulfide thin film (CdS) as n-type, which prepared by spray coating, while p-type electro...In the present work, Dye Sensitized Solar Cells (DSSCs) have been fabricated by utilizing a dense layer of photoelctrode cadmium sulfide thin film (CdS) as n-type, which prepared by spray coating, while p-type electrode was multi-wall carbon nanotubes/graphene (MWNT-G) composites. The experimental results showed the higher energy conversion efficiency for CdS/MWNT-G was 0.056% in comparison with the others, which were CdS/MWNT with 0.044% and CdS/G with 0.037% respectively, which referred to improvement in the conductivity by using MWNT-G. The microstructure and nanostructure of CdS, MWNT, G, and MWNT-G nanocomposite were carried out by employing Scanning Electron Microscopy (SEM). X-Ray Diffraction (XRD) has been used to get crystal size of CdS, Raman scattering, and optical absorption also used for characterizations the samples. This study promised to increase and enhance the conversion efficiency of photovoltaic devices.展开更多
Carbon nanotubes and graphene are carbon-based materials, which possess not only unique structure but also prop- erties such as high surface area, extraordinary mechanical properties, high electronic conductivity, and...Carbon nanotubes and graphene are carbon-based materials, which possess not only unique structure but also prop- erties such as high surface area, extraordinary mechanical properties, high electronic conductivity, and chemical stability. Thus, they have been regarded as an important material, especially for exploring a variety of complex catalysts. Considerable efforts have been made to functionalize and fabricate carbon-based composites with metal nanoparticles. In this review, we summarize the recent progress of our research on the decoration of carbon nanotubes/graphene with metal nanoparticles by using polyoxometalates as key agents, and their enhanced photo-electrical catalytic activities in various catalytic reactions. The polyoxometalates play a key role in constructing the nanohybrids and contributing to their photo-electrical catalytic properties.展开更多
The detection on tetracycline( TC) in drinking water poses an environmental issue since TC has been widely used to prevent animal disease and promote their growth. In addition,TC was difficult to remove or biodegrade,...The detection on tetracycline( TC) in drinking water poses an environmental issue since TC has been widely used to prevent animal disease and promote their growth. In addition,TC was difficult to remove or biodegrade,which posed a challenge to the conventional techniques. In this work,the batch experiments on TC adsorption in aqueous solution of hydrogel( HG) consisting of graphene oxide( GO) and TiO_2 nanotubes( TN) were successfully conducted. HG composite( HG-TN-GO) was prepared with TN and GO with self-assembly method during the oxidation-reduction reaction,and criogel( CG) with TN and GO was characterized by pH at point of zero charge( pH_(pzc)), transmission electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy( XPS). The adsorption capacity of HG-TN-GO on TC was evaluated by analyzing its isotherms. The maximum adsorption capacity reached 751. 3 mg/g. Besides,the adsorption isotherms were well fitted by the Langmuir model, with the theoretical maximum( q_m) of 797. 0 mg/g. The adsorption process was systematically studied by varying pH during the whole adsorption process. The adsorption occurred probably via π-π interaction and cation-π bonding between TC and the HG-TN-GO surface. The composite could be regenerated in 50% ethanol aqueous solution,without significant capacity loss. After 6 recycles,the decrease of adsorption capacity was less than 10%.展开更多
A reliable and inexpensive pretreatment procedure in the determination ofβ2-agonists in pork was developped.The procedure used a nanocomposite of multiwalled carbon nanotubes(CNTs)functionalized with graphene(rGO)as ...A reliable and inexpensive pretreatment procedure in the determination ofβ2-agonists in pork was developped.The procedure used a nanocomposite of multiwalled carbon nanotubes(CNTs)functionalized with graphene(rGO)as the reversed dispersive sorbent.It was analyzed after purification by highperformance liquid chromatography,the extraction time and the properties of the nanocomposite were optimized.Under optimized conditions,present method has linear response over concentration range of 0.5–50 ng/mL in pork samples with a satisfactory detection limit close to 0.1 ng/mL.The precisions of the current method(coefficient of variation)are lower than 5%,while recoveries are more than 98.3%.The nanocomposite exhibited high adsorptivity,long-term storage stability,satisfactory anti-interfering activity and high selectivity toward2-agonists compared with those of rGO and CNTs.展开更多
The highest occupied molecular orbital(HOMO) energies of fullerenes are found by quantitative first-principles calculations to be raised by negative charging, and the rising rate rank of the fullerenes is C60 >C7...The highest occupied molecular orbital(HOMO) energies of fullerenes are found by quantitative first-principles calculations to be raised by negative charging, and the rising rate rank of the fullerenes is C60 >C70 >C80 >C90>C100 >C180. Then we compare fullerenes with carbon nanotubes(CNTs) and graphene sheets(GSs) and find that the increase of the HOMO energy of a fullerene is much faster than that of CNTs and graphene sheets with the same number of C atoms. The rising rate rank is fullerene>CNT>GS, which holds no matter what the number of C atoms is or which structure the fullerene isomer is. This work paves a new path for developing all-carbon devices with low-dimensional carbon nanomaterials as different functional elements.展开更多
Wearable fiber-shaped integrated energy conversion and storage devices have attracted increasing attention,but it remains a big challenge to achieve a common fiber electrode for both energy conversion and storage with...Wearable fiber-shaped integrated energy conversion and storage devices have attracted increasing attention,but it remains a big challenge to achieve a common fiber electrode for both energy conversion and storage with high performance.Here,we grow aligned carbon nanotubes(CNTs)array on continuous graphene(G)tube,and their seamlessly connected structure provides the obtained G/CNTs composite fiber with a unique self-supported hollow structure.Taking advantage of the hollow structure,other active materials(e.g.,polyaniline,PANI)could be easily functionalized on both inner and outer surfaces of the tube,and the obtained G/CNTs/PANI composite hollow fibers achieve a high mass loading(90%)of PANI.The G/CNTs/PANI composite hollow fibers can not only be used for high-performance fiber-shaped supercapacitor with large specific capacitance of 472 mF cm^-2,but also can replace platinum wire to build fiber-shaped dye-sensitized solar cell(DSSC)with a high power conversion efficiency of 4.20%.As desired,the integrated device of DSSC and supercapacitor with the G/CNTs/PANI composite hollow fiber used as the common electrode exhibits a total power conversion and storage efficiency as high as 2.1%.Furthermore,the self-supported G/CNTs hollow fiber could be further functionalized with other active materials for building other flexible and wearable electronics.展开更多
Magnesium(Mg)composites reinforced with carbon-based nanomaterial(CBN)often exhibit low density,enhanced strength,good conductivity,improved wear resistance,and excellent biocompatibility when compared to current indu...Magnesium(Mg)composites reinforced with carbon-based nanomaterial(CBN)often exhibit low density,enhanced strength,good conductivity,improved wear resistance,and excellent biocompatibility when compared to current industry Mg alloys.This review aims to critically evaluate recent developments in Mg-CBN composites and is divided into five sections:First,a brief introduction to Mg-CBN composites is provided,followed by a discussion of different fabrication techniques for these composites,including powder metallurgy,casting,friction stir processing,and selective laser melting.A particular focus is on the current processing challenges,including dispersion strategies to create homogeneous Mg-CBN composites.The effect of processing on the quantifying disorder in CBNs and distinguishing different sp2carbon materials is also highlighted.Then,the effect of CBN on various properties of Mg-CBN composites is thoroughly analyzed,and the strengthening efficiency of CNTs and graphene in the Mg matrix is examined.Finally,the potential applications of Mg-CBN composites in various industries are proposed,followed by a summary and suggestions for future research directions in the field of Mg-CBN composites.展开更多
基金financially supported by the National Natural Science Foundation of China(21473155,21273198,21073159)Natural Science Foundation of Zhejiang Province(L12B03001)the foundation from State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology(GCTKF2014009)~~
文摘Selective oxidation of glycerol is a hot topic.Increased biodiesel production has led to glycerol oxidation over Au- and Pt-based catalysts being widely studied.However,Pt catalysts suffer from deactivation because of weak metal-support interactions.In this study,multi-walled carbon nanotube(MWCNTs)-pillared nitrogen-doped graphene(NG) was prepared by direct pyrolysis of melamine on MWCNTs,and the synthesized NG-MWCNT composite was used as the support for Pt.Characterization results showed that the surface area(173 m^2/g) and pore volume of the NG-MWCNT composite were greater than those of bare MWCNTs and the separated melamine pyrolysis product(CH_x).Pt(1.4±0.4 nm) dispersion on the NG-MWCNTs was favorable and the Pt/NG-MWCNT catalyst was highly active and selective in the oxidation of glycerol to glyceric acid(GLYA) in base-free aqueous solution.For example,the conversion of glycerol reached 64.4% with a GLYA selectivity of 81.0%,whereas the conversions of glycerol over Pt/MWCNTs and Pt/CN_x were 29.0% and 31.6%,respectively.The unique catalytic activity of the Pt/NG-MWCNTs is attributed to well-dispersed Pt clusters on the NG-MWCNTs and the electron-donating effect of the nitrogen dopant in the NG-MWCNTs.
基金financially supported by the National Natural Science Foundation of China (Nos.U2002212,52102058,52204414,52204413,and 52204412)the National Key R&D Program of China (Nos.2021YFC1910504,2019YFC1907101,2019YFC1907103,and 2017YFB0702304)+7 种基金the Key R&D Program of Ningxia Hui Autonomous Region,China (Nos.2021BEG01003 and2020BCE01001)the Xijiang Innovation and Entrepreneurship Team,China (No.2017A0109004)the Macao Young Scholars Program (No.AM2022024),Chinathe Beijing Natural Science Foundation (Nos.L212020 and 2214073),Chinathe Guangdong Basic and Applied Basic Research Foundation,China (Nos.2021A1515110998 and 2020A1515110408)the China Postdoctoral Science Foundation (No.2022M710349)the Fundamental Research Funds for the Central Universities,China (Nos.FRF-BD-20-24A,FRF-TP-20-031A1,FRF-IC-19-017Z,and 06500141)the Integration of Green Key Process Systems MIIT and Scientific and Technological Innovation Foundation of Foshan,China(Nos.BK22BE001 and BK21BE002)。
文摘Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology regulation, and heterojunction construction strategies to synthesize N-GQD/N-doped TiO_(2)/P-doped porous hollow g-C_(3)N_(4) nanotube (PCN) composite photocatalysts (denoted as G-TPCN). The optimal sample (G-TPCN doped with 0.1wt% N-GQD, denoted as 0.1% G-TPCN) exhibits significantly enhanced photoabsorption, which is attributed to the change in bandgap caused by elemental doping (P and N), the improved light-harvesting resulting from the tube structure, and the upconversion effect of N-GQDs. In addition, the internal charge separation and transfer capability of0.1% G-TPCN are dramatically boosted, and its carrier concentration is 3.7, 2.3, and 1.9 times that of N-TiO_(2), PCN, and N-TiO_(2)/PCN(TPCN-1), respectively. This phenomenon is attributed to the formation of Z-scheme heterojunction between N-TiO_(2) and PCNs, the excellent electron conduction ability of N-GQDs, and the short transfer distance caused by the porous nanotube structure. Compared with those of N-TiO_(2), PCNs, and TPCN-1, the H2 production activity of 0.1%G-TPCN under visible light is enhanced by 12.4, 2.3, and 1.4times, respectively, and its ciprofloxacin (CIP) degradation rate is increased by 7.9, 5.7, and 2.9 times, respectively. The optimized performance benefits from excellent photoresponsiveness and improved carrier separation and migration efficiencies. Finally, the photocatalytic mechanism of 0.1% G-TPCN and five possible degradation pathways of CIP are proposed. This study clarifies the mechanism of multiple modification strategies to synergistically improve the photocatalytic performance of 0.1% G-TPCN and provides a potential strategy for rationally designing novel photocatalysts for environmental remediation and solar energy conversion.
基金supported financially by the Science and Technology Cooperation and Exchange Special Project of Shanxi Province(Grant No.202204041101006)the Fundamental Research Program of Shanxi Province(Grant Nos.20210302123013,202203021222077,and 202203021222069)the Shanxi Scholarship Council of China(Grant No.2023-130).
文摘Flexible sensors are used widely in wearable devices, specifically flexible piezoresistive sensors, which are common and easy to manipulate.However, fabricating such sensors is expensive and complex, so proposed here is a simple fabrication approach involving a sensor containing microstructures replicated from a sandpaper template onto which polydimethylsiloxane containing a mixture of graphene and carbon nanotubes is spin coated. The surface morphologies of three versions of the sensor made using different grades of sandpaper are observed, and the corresponding pressure sensitivities and linearity and hysteresis characteristics are assessed and analyzed. The results show that the sensor made using 80-mesh sandpaper has the best sensing performance. Its sensitivity is 0.341 kPa-1in the loading range of 0–1.6 kPa, it responds to small external loading of 100 Pa with a resistance change of 10%, its loading and unloading response times are 0.126 and 0.2 s, respectively,and its hysteresis characteristic is ~7%, indicating that the sensor has high sensitivity, fast response, and good stability. Thus, the presented piezoresistive sensor is promising for practical applications in flexible wearable electronics.
文摘A 3D nitrogen⁃doped graphene/multi⁃walled carbon nanotube(CS⁃GO⁃NCNT)crosslinked network mate⁃rial was successfully synthesized utilizing chitosan and melamine as carbon and nitrogen sources,concomitant with the incorporation of multi⁃wall carbon nanotubes and employing freeze drying technology.The material amalgamates the merits of 1D/2D hybrid carbon materials,wherein 1D carbon nanotubes confer robustness and expedited elec⁃tron transport pathways,while 2D graphene sheets facilitate rapid ion migration.Furthermore,the introduction of nitrogen heteroatoms serves to furnish additional active sites for lithium storage.When served as an anode material for lithium⁃ion batteries,the CS⁃GO⁃NCNT electrode delivered a reversible capacity surpassing 500 mAh·g^(-1),mark⁃edly outperforming commercial graphite anodes.Even after 300 cycles at a high current density of 1 A·g^(-1),it remained a reversible capacity of up to 268 mAh·g^(-1).
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education(200800191013)the Fundamental Research Funds for the Central Universities
文摘Objective This study was aimed to investigate the toxic effects of 3 nanomaterials, i.e. multi-walled carbon nanotubes (MWCNTs), graphene oxide (GO), and reduced graphene oxide (RGO), on zebrafish embryos. Methods The 2-h post-fertilization (hpf) zebrafish embryos were exposed to MWCNTs, GO, and RGO at different concentrations (1, 5, 10, 50, 100 mg/L) for 96 h. Afterwards, the effects of the 3 nanomateria on spontaneous movement, heart rate, hatching rate, length of larvae, mortality, and malformations Is were evaluated. Results Statistical analysis indicated that RGO significantly inhibited the hatching of zebrafish embryos. Furthermore, RGO and MWCNTs decreased the length of the hatched larvae at 96 hpf. No obvious morphological malformation or mortality was observed in the zebrafish embryos after exposure to the three nanomaterials. Conclusion MWCNTs, GO, and RGO were all toxic to zebrafish embryos to influence embryos hatching and larvae length. Although no obvious morphological malformation and mortality were observed in exposed zebrafish embryos, further studies on the toxicity of the three nanomaterials are still needed.
文摘With the development of carbon nanomaterials in recent years, there has been an explosion of interests in using carbon nanotubes(CNTs) and graphene for developing new biosensors. It is believed that employing CNTs and graphene as sensor components can make sensors more reliable, accurate, and fast due to their remarkable properties. Depending on the types of target molecular, different strategies can be applied to design sensor device. This review article summarized the important progress in developing CNT-and graphene-based electrochemical biosensors, field-effect transistor biosensors, and optical biosensors. Although CNTs and graphene have led to some groundbreaking discoveries, challenges are still remained and the state-of-the-art sensors are far from a practical application. As a conclusion, future effort has to be made through an interdisciplinary platform, including materials science, biology, and electric engineering.
基金financially supported by a research grant from the Ministry of Education - Singapore (R-284-000-147-112)
文摘Carbon nanotubes (CNTs) and graphene have attracted great attention since decades ago because of their interesting structure and properties and important application in many areas. They can have high conductivity, high specific surface area, high transparency in the visible range and high mechanical flexibility. They have important application in energy conversion systems including solar cells and fuel cells. They have been extensively studied as the transparent electrode and interfacial materials of organic solar cells (OSCs) and perovskite solar cells (PSCs). They are also used as the catalytic counter electrode of dye-sensitized solar cells (DSSCs). In addition, graphene oxide (GO) is exploited as an auxiliary binder of TiO2 paste for the mesoporous TiO2 layer of DSSCs, and GO and functionalized CNTs are adopted as gelators of gel electrolyte for quasi-solid state DSSCs. CNTs and graphene also have important application in fuel cells. They can be used as catalyst support for the oxidation of fuels or oxygen reduction reaction (ORR). CNTs and graphene, particularly when doped with nitrogen, can be directly used metal-free catalysts. This article provides a brief review on the application of CNTs and graphene in OSCs, PSCs, DSSCs and fuel cells.
基金Project(NRF-2014R1A1A4A03005148)supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology,Korea
文摘High-thermal conductivity enhancement of nanofluid is one of the promising topics of the nanoscience research field. This work reports the experimental study on the preparation of graphene(GN) and multi-walled carbon nanotubes(MWCNTs) based nanofluids with the assistance of sodium dodecyl benzene sulfonate(SDBS) and sodium dodecyl sulfate(SDS) surfactants, and their thermal behaviors. The present work suggests not a solution, but a solution approach and deduces a new conclusion by trying to resolve the agglomeration problem and improve the dispersibility of nanoparticles in the base fluid. The analysis results of FESEM, thermal conductivity, diffusivity, effusivity and heat transfer coefficient enhancement ratio of nanofluid with surfactants SDS and SDBS expose strong evidence of the dispersing effect of surfactant on the making of nanofluid.
基金the Sahand University of Technology and Ghent University for the support of this research。
文摘The effects of the post-deformation annealing on the microstructural evolution of hot rolled Al7075 matrix composites reinforced with CNTs and GNPs were investigated.The multi-pass hot rolling was applied on the stir cast samples.Annealing was then applied to the composites at 450℃ for 4 h.Microstructural evolution was examined by SEM,EDS,and EBSD techniques.EBSD data showed that the addition of 0.87 vol.%(GNPs+CNTs)significantly inhibited the occurrence of recrystallization.Also,in the composite with 0.96 vol.%CNTs,recrystallization was partially inhibited.Whereas,in composites with 0.92 vol.%of GNPs,the occurrence of recrystallization through particle stimulated nucleation(PSN)mechanism was significantly accelerated.The volume fraction of recrystallized grains depends significantly on the occurrence of PSN in the presence of reinforcements.The intensity and type of the main components of the texture as well as the FCC fibers depend on the type of reinforcement.
文摘Electrochemical capacitors, which can store large amount of electrical energy with the capacitance of thousands of Farads, have recently been attracting enormous interest and attention. Carbon nanostructures such as carbon nanotubes and graphene are considered as the potentially revolutionary energy storage materials due to their excellent properties. This paper is focused on the application of carbon nanostructures in electrochemical capacitors, giving an overview regarding the basic mechanism, design, fabrication and achievement of latest research progresses for electrochemical capacitors based on carbon nanotubes, graphene and their composites. Their current challenges and future prospects are also discussed.
基金supported by the National Natural Science Foundation of China(No.30972055,31101286)Agricultural Science and Technology Achievements Transformation Fund Projects of the Ministry of Science and Technology of China(No.2011GB2C60020)Shandong Provincial Natural Science Foundation,China(No.Q2008D03)
文摘In this paper, an amperometric acetylcholinesterase(ACh E) biosensor for quantitative determination of carbaryl was developed. Firstly, the poly(diallyldimethy-lammonium chloride)-multi-walled carbon nanotubes-graphene hybrid film was modified onto the glassy carbon electrode(GCE) surface, then ACh E was immobilized onto the modified GCE to fabricate the ACh E biosensor. The morphologies and electrochemistry properties of the prepared ACh E biosensor were investigated by using scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. All variables involved in the preparation process and analytical performance of the biosensor were optimized. Based on the inhibition of pesticides on the ACh E activity, using carbaryl as model compounds, the biosensor exhibited low detection limit, good reproducibility and high stability in a wide range. Moreover, the biosensor can also be used for direct analysis of practical samples, which would provide a new promising tool for pesticide residues analysis.
基金financial support by the Australian Research Council (LP180100005 & DP200101737)。
文摘Featuring exceptional mechanical and functional performance, MWCNTs and graphene(nano)platelets(GNPs or Gn Ps;each platelet below 10 nm in thickness) have been increasingly used for the development of polymer nanocomposites. Since MWCNTs are now cost-effective at US$30 per kg for industrial applications, this work starts by briefly reviewing the disentanglement and surface modification of MWCNTs as well as the properties of the resulting polymer nanocomposites. GNPs can be made through the thermal treatment of graphite intercalation compounds followed by ultrasonication;GNPs would have lower cost yet higher electrical conductivity over 1,400 S cmthan MWCNTs. Through proper surface modification and compounding techniques, both types of fillers can reinforce or toughen polymers and simultaneously add anti-static performance. A high ratio of MWCNTs to GNPs would increase the synergy for polymers. Green, solvent-free systhesis methods are desired for polymer nanocomposites. Perspectives on the limitations, current challenges and future prospects are provided.
基金a joint National Natural Science Foundation of China-Deutsche Forschungsgemeinschaft(NSFC-DFG) project(NSFC grant 51861135313,DFG JA466/39-1)supported by National Natural Science Foundation of China(21706199)International Science & Technology Cooperation Program of China(2015DFE52870)Jilin Province Science and Technology Development Plan(20180101208JC)。
文摘Three-dimensional(3 D) hybrid of nanocarbons is a very promising way to the high-performance design of electrocatalysis materials.However,sp^(3)-like defect structure,a combination of high strength and conduction of graphene and carbon nanotubes(CNTs) is rarely reported.Herein,3 D neural-like hybrids of graphene(from reduced graphene oxide) and carbon nanotubes(CNTs) have been integrated via sp^(3)-like defect structure by a hydrothermal approach.The sp^(3)-like defect structure endows 3 D nanocarbon hybrids with an enhanced carrier transfer,high structural stability,and electrocatalytic durability.The neural-like structure is shown to demonstrate a cascade effect of charges and significant performances regarding bio-electrocatalysis and lithium-sulfur energy storage.The concept and mechanism of "sp^(3)-like defect structure" are proposed at an atomic/nanoscale to clarify the generation of rational structure as well as the cascade electron transfer.
文摘In the present work, Dye Sensitized Solar Cells (DSSCs) have been fabricated by utilizing a dense layer of photoelctrode cadmium sulfide thin film (CdS) as n-type, which prepared by spray coating, while p-type electrode was multi-wall carbon nanotubes/graphene (MWNT-G) composites. The experimental results showed the higher energy conversion efficiency for CdS/MWNT-G was 0.056% in comparison with the others, which were CdS/MWNT with 0.044% and CdS/G with 0.037% respectively, which referred to improvement in the conductivity by using MWNT-G. The microstructure and nanostructure of CdS, MWNT, G, and MWNT-G nanocomposite were carried out by employing Scanning Electron Microscopy (SEM). X-Ray Diffraction (XRD) has been used to get crystal size of CdS, Raman scattering, and optical absorption also used for characterizations the samples. This study promised to increase and enhance the conversion efficiency of photovoltaic devices.
基金Project supported by the National Natural Science Foundation of China(Grant No.21371173)the National Basic Research Program of China(973 Program)(Grant No.2012CB932504)
文摘Carbon nanotubes and graphene are carbon-based materials, which possess not only unique structure but also prop- erties such as high surface area, extraordinary mechanical properties, high electronic conductivity, and chemical stability. Thus, they have been regarded as an important material, especially for exploring a variety of complex catalysts. Considerable efforts have been made to functionalize and fabricate carbon-based composites with metal nanoparticles. In this review, we summarize the recent progress of our research on the decoration of carbon nanotubes/graphene with metal nanoparticles by using polyoxometalates as key agents, and their enhanced photo-electrical catalytic activities in various catalytic reactions. The polyoxometalates play a key role in constructing the nanohybrids and contributing to their photo-electrical catalytic properties.
基金Environmental Engineering,Natural Science Foundation of China(No.51522805)Innovation Foundation of Nanjing Institute of Technology,China(No.CKJB201410)
文摘The detection on tetracycline( TC) in drinking water poses an environmental issue since TC has been widely used to prevent animal disease and promote their growth. In addition,TC was difficult to remove or biodegrade,which posed a challenge to the conventional techniques. In this work,the batch experiments on TC adsorption in aqueous solution of hydrogel( HG) consisting of graphene oxide( GO) and TiO_2 nanotubes( TN) were successfully conducted. HG composite( HG-TN-GO) was prepared with TN and GO with self-assembly method during the oxidation-reduction reaction,and criogel( CG) with TN and GO was characterized by pH at point of zero charge( pH_(pzc)), transmission electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy( XPS). The adsorption capacity of HG-TN-GO on TC was evaluated by analyzing its isotherms. The maximum adsorption capacity reached 751. 3 mg/g. Besides,the adsorption isotherms were well fitted by the Langmuir model, with the theoretical maximum( q_m) of 797. 0 mg/g. The adsorption process was systematically studied by varying pH during the whole adsorption process. The adsorption occurred probably via π-π interaction and cation-π bonding between TC and the HG-TN-GO surface. The composite could be regenerated in 50% ethanol aqueous solution,without significant capacity loss. After 6 recycles,the decrease of adsorption capacity was less than 10%.
基金This study was financially supported by the Program of Technology Gansu Province(1309RTSA025,1009FTGA018,1306TTPA036).
文摘A reliable and inexpensive pretreatment procedure in the determination ofβ2-agonists in pork was developped.The procedure used a nanocomposite of multiwalled carbon nanotubes(CNTs)functionalized with graphene(rGO)as the reversed dispersive sorbent.It was analyzed after purification by highperformance liquid chromatography,the extraction time and the properties of the nanocomposite were optimized.Under optimized conditions,present method has linear response over concentration range of 0.5–50 ng/mL in pork samples with a satisfactory detection limit close to 0.1 ng/mL.The precisions of the current method(coefficient of variation)are lower than 5%,while recoveries are more than 98.3%.The nanocomposite exhibited high adsorptivity,long-term storage stability,satisfactory anti-interfering activity and high selectivity toward2-agonists compared with those of rGO and CNTs.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11374174,51390471,51527803,and 51701143the National Basic Research Program of China under Grant No 2015CB654902+4 种基金the National Key Research and Development Program under Grant No 2016YFB0700402the Foundation for the Author of National Excellent Doctoral Dissertation under Grant No 201141the National Program for Thousand Young Talents of China,the Tianjin Municipal Education Commissionthe Tianjin Municipal Science and Technology Commissionthe Fundamental Research Fund of Tianjin University of Technology
文摘The highest occupied molecular orbital(HOMO) energies of fullerenes are found by quantitative first-principles calculations to be raised by negative charging, and the rising rate rank of the fullerenes is C60 >C70 >C80 >C90>C100 >C180. Then we compare fullerenes with carbon nanotubes(CNTs) and graphene sheets(GSs) and find that the increase of the HOMO energy of a fullerene is much faster than that of CNTs and graphene sheets with the same number of C atoms. The rising rate rank is fullerene>CNT>GS, which holds no matter what the number of C atoms is or which structure the fullerene isomer is. This work paves a new path for developing all-carbon devices with low-dimensional carbon nanomaterials as different functional elements.
基金the National Natural Science Foundation of China(Nos.21774094,51702237,and 51973159)Science and Technology Commission of Shanghai Municipality(14DZ2261100)+1 种基金Shanghai Rising–Star Program(17QA1404300)the Youth Talent Support Program at Shanghai,the Fundamental Research Funds for the Central Universities(Tongji University).
文摘Wearable fiber-shaped integrated energy conversion and storage devices have attracted increasing attention,but it remains a big challenge to achieve a common fiber electrode for both energy conversion and storage with high performance.Here,we grow aligned carbon nanotubes(CNTs)array on continuous graphene(G)tube,and their seamlessly connected structure provides the obtained G/CNTs composite fiber with a unique self-supported hollow structure.Taking advantage of the hollow structure,other active materials(e.g.,polyaniline,PANI)could be easily functionalized on both inner and outer surfaces of the tube,and the obtained G/CNTs/PANI composite hollow fibers achieve a high mass loading(90%)of PANI.The G/CNTs/PANI composite hollow fibers can not only be used for high-performance fiber-shaped supercapacitor with large specific capacitance of 472 mF cm^-2,but also can replace platinum wire to build fiber-shaped dye-sensitized solar cell(DSSC)with a high power conversion efficiency of 4.20%.As desired,the integrated device of DSSC and supercapacitor with the G/CNTs/PANI composite hollow fiber used as the common electrode exhibits a total power conversion and storage efficiency as high as 2.1%.Furthermore,the self-supported G/CNTs hollow fiber could be further functionalized with other active materials for building other flexible and wearable electronics.
文摘Magnesium(Mg)composites reinforced with carbon-based nanomaterial(CBN)often exhibit low density,enhanced strength,good conductivity,improved wear resistance,and excellent biocompatibility when compared to current industry Mg alloys.This review aims to critically evaluate recent developments in Mg-CBN composites and is divided into five sections:First,a brief introduction to Mg-CBN composites is provided,followed by a discussion of different fabrication techniques for these composites,including powder metallurgy,casting,friction stir processing,and selective laser melting.A particular focus is on the current processing challenges,including dispersion strategies to create homogeneous Mg-CBN composites.The effect of processing on the quantifying disorder in CBNs and distinguishing different sp2carbon materials is also highlighted.Then,the effect of CBN on various properties of Mg-CBN composites is thoroughly analyzed,and the strengthening efficiency of CNTs and graphene in the Mg matrix is examined.Finally,the potential applications of Mg-CBN composites in various industries are proposed,followed by a summary and suggestions for future research directions in the field of Mg-CBN composites.