期刊文献+
共找到675篇文章
< 1 2 34 >
每页显示 20 50 100
Diffractive photonic applications mediated by laser reduced graphene oxides 被引量:3
1
作者 Sicong Wang Xueying Ouyang +3 位作者 Ziwei Feng Yaoyu Cao Min Gu Xiangping Li 《Opto-Electronic Advances》 2018年第2期1-8,共8页
Modification of reduced graphene oxide in a controllable manner provides a promising material platform for producinggraphene based devices. Its fusion with direct laser writing methods has enabled cost-effective and s... Modification of reduced graphene oxide in a controllable manner provides a promising material platform for producinggraphene based devices. Its fusion with direct laser writing methods has enabled cost-effective and scalable production for advanced applications based on tailored optical and electronic properties in the conductivity, the fluorescence and the refractive index during the reduction process. This mini-review summarizes the state-of-the-art status of the mechanisms of reduction of graphene oxides by direct laser writing techniques as well as appealing optical diffractive applications including planar lenses, information storage and holographic displays. Owing to its versatility and up-scalability, the laser reduction method holds enormous potentials for graphene based diffractive photonic devices with diverse functionalities. 展开更多
关键词 graphene oxides NANOPHOTONICS direct laser writing
下载PDF
CO Catalytic Oxide over Cu Atom Supported on Graphene Oxides from the First Principles
2
作者 黄斌 辛育东 陈荣 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2015年第4期624-631,共8页
Via the first principles calculations, we predict that Cu doped graphene oxide (GO) is a much better nanocatalyst in terms of activity and feasibility. The high activity of Cu doped graphene oxides may be attributed... Via the first principles calculations, we predict that Cu doped graphene oxide (GO) is a much better nanocatalyst in terms of activity and feasibility. The high activity of Cu doped graphene oxides may be attributed to the charge transfer between the GO and Cu atom, resulting in an activated Cu atom. In the ER mechanism, the CO molecules directly react with the activated O2, then forming a metastable carbonate-like intermediate state (OOCO). The reaction may proceed via two reaction paths of OOCO → CO2 + O and CO + OOCO → 2CO2, respectively. The calculated results show that the latter path is relatively more thermodynamically favorable with a modest energy barrier, so it should be more preferred. We expect our theoretical predictions to open a new avenue to fabricate carbon-based catalysts for CO oxidation with lower cost and higher activity. 展开更多
关键词 first principles calculations Cu doped graphene oxides CO oxide density of states
下载PDF
Preparation of graphene oxides with different sheet sizes by temperature control 被引量:2
3
作者 钱哲 陈亮 +5 位作者 李德远 彭兵权 石国升 徐刚 方海平 吴明红 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第10期316-320,共5页
The sheet size of a graphene oxide (GO) can greatly influence its electrical, optical, mechanical, electrochemical and catalytic property. It is a key challenge to how to control the sheet size during its preparatio... The sheet size of a graphene oxide (GO) can greatly influence its electrical, optical, mechanical, electrochemical and catalytic property. It is a key challenge to how to control the sheet size during its preparation in different application fields. According to our previous theoretical calculations of the effect of temperature on the oxidation process of graphene, we use Hummers method to prepare GOs with different sheet sizes by simply controlling the temperature condition in the process of the oxidation reaction of potassium permanganate (KMnO4) with graphene and the dilution process with deionized water. The results detected by transmission electron microscopy (TEM) and atomic force microscopy (AFM) show that the average sizes of GO sheets prepared at different temperatures are about 1 μm and 7 μm respectively. The ultraviolet-visible spectroscopy (UV-vis) shows that lower temperature can lead to smaller oxidation degrees of GO and less oxygen functional groups on the surface. In addition, we prepare GO membranes to test their mechanical strengths by ultrasonic waves, and we find that the strengths of the GO membranes prepared under low temperatures are considerably higher than those prepared under high temperatures, showing the high mechanical strengths of larger GO sheets. Our experimental results testify our previous theoretical calculations. Compared with the traditional centrifugal separation and chemical cutting method, the preparation process of GO by temperature control is simple and low-cost and also enables large-size synthesis. These findings develop a new method to control GO sheet sizes for large-scale potential applications. 展开更多
关键词 graphene oxide sheet size temperature control degree of oxidation
下载PDF
Controlling electrodeposited Ni layers by different-sized graphene oxides enables conductive e-textiles for the highly sensitive electrochemical detection of glucose
4
作者 Zhen Li Zibo Chen +5 位作者 Xiaodong Ji Huihui Jin Yunfa Si Jingwei Zhang Cheng Chen Daping He 《Nano Research》 SCIE EI CSCD 2024年第7期6258-6264,共7页
With the increasing popularity of wearable electronic devices,there is an urgent demand to develop electronic textiles(e-textiles)for device fabrication.Nevertheless,the difficulty in reconciliation between conductivi... With the increasing popularity of wearable electronic devices,there is an urgent demand to develop electronic textiles(e-textiles)for device fabrication.Nevertheless,the difficulty in reconciliation between conductivity and manufacturing costs hinders their large-scale practical applications.Herein,we reported a facile and economic method for preparing conductive e-textiles.Specifically,nonconductive polypropylene(PP)was wrapped by reduced graphene oxide(rGO),followed by the electrodeposition of Ni nanoparticles(NPs).Notably,modulating the sheet size of graphene oxide(GO)resulted in controllable deposition of Ni NPs with adjustable size,allowing for controlled manipulations over the structures,morphologies,and conductivity of the obtained e-textiles,which influenced their performance in electrochemical glucose detection subsequently.The optimal material,denoted as Ni/rGO+(0.2)/PP,exhibited an impressive conductivity of 7.94×10^(4)S·m^(−1).With regard to the excellent conductivity of the as-prepared e-textiles and the high electrocatalytic activity of Ni for glucose oxidation,the asprepared e-textiles were subjected to glucose detection.It was worth emphasizing that the Ni/rGO_(0.2)/PP-based electrode demonstrated promising performance for nonenzymatic/label-free glucose detection,with a detection limit of 0.36μM and a linear response range of 0.5μM to 1 mM.This study paves the way for further development and application prospects of conductive etextiles. 展开更多
关键词 conductive e-textiles nonenzymatic/label-free glucose detection controllable Ni deposition graphene oxides sizedependent effect
原文传递
Radiative Blood-Based Hybrid Copper-Graphene Nanoliquid Flows along a Source-Heated Leaning Cylinder
5
作者 Siti Nur Ainsyah Ghani Noor Fadiya Mohd Noor 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期1017-1037,共21页
Variant graphene,graphene oxides(GO),and graphene nanoplatelets(GNP)dispersed in blood-based copper(Cu)nanoliquids over a leaning permeable cylinder are the focus of this study.These forms of graphene are highly benef... Variant graphene,graphene oxides(GO),and graphene nanoplatelets(GNP)dispersed in blood-based copper(Cu)nanoliquids over a leaning permeable cylinder are the focus of this study.These forms of graphene are highly beneficial in the biological and medical fields for cancer therapy,anti-infection measures,and drug delivery.The non-Newtonian Sutterby(blood-based)hybrid nanoliquid flows are generalized within the context of the Tiwari-Das model to simulate the effects of radiation and heating sources.The governing partial differential equations are reformulated into a nonlinear set of ordinary differential equations using similar transformational expressions.These equations are then transformed into boundary value problems through a shooting technique,followed by the implementation of the bvp4c tool in MATLAB.The influences of various parameters on the model’s nondimensional velocity and temperature profiles,reduced skin friction,and reduced Nusselt number are presented for detailed discussions.The results indicated that Cu-GNP/blood and Cu-GO/blood hybrid nanofluids exhibit the lowest and highest velocity distributions,respectively,for increased nanoparticles volume fraction,curvature parameter,Sutterby fluid parameter,Hartmann number,and wall permeability parameter.Conversely,opposite trends are observed for the temperature distribution for all considered parameters,except the mixed convection parameter.Increases in the reduced skin friction magnitude and the reduced Nusselt number with higher values of graphene/GO/GNP nanoparticle volume fraction are also reported.Finally,GNP is identified as the superior heat conductor,with an average increase of approximately 5%and a peak of 7.8%in the reduced Nusselt number compared to graphene and GO nanoparticles in the Cu/blood nanofluids. 展开更多
关键词 Hybrid nanofluid sutterby fluid tiwari-das model thermal radiation graphene graphene oxides graphene nanoplatelets
下载PDF
Integrating reduced graphene oxides and PPy nanoparticles for enhanced electricity from water evaporation 被引量:2
6
作者 Bingkun Tian Xiaofeng Jiang +3 位作者 Weicun Chu Chunxiao Zheng Wanlin Guo Zhuhua Zhang 《International Journal of Smart and Nano Materials》 SCIE EI 2023年第2期230-242,共13页
Developing high-performance nanostructured materials is key to deliver the potential of hydrovoltaic technology into practical applications.As single-component materials have approached its limit in generating hydrovo... Developing high-performance nanostructured materials is key to deliver the potential of hydrovoltaic technology into practical applications.As single-component materials have approached its limit in generating hydrovoltaic electricity,the development of multi-component hydrovoltaic materials has been necessary in continuously boosting the electricity output.Here,we report a hydrovoltaic material by integrating reduced graphene oxides and polypyrrole nanoparticles(rGO/PPy),where the rGO contributes improved conductivity and large specific surface area while PPy nanoparticles enable enhanced interaction with water.The device fabricated with this material generates a short-circuit current of 6μA as well as a maximum power density of over 1μW/cm3 from natural evaporation of water.And the substantial ion-PPy interaction enables robust voltage generation from evaporation of various salt solutions.Moreover,an outstanding scaling ability is demonstrated by connecting 10 devices in series that generate a sustainable voltage of up to~2.5 V,sufficing to power many commercial devices,e.g.LED bulb and LCD screen. 展开更多
关键词 Hydrovoltaic generator water evaporation reduced graphene oxide Ppy nanoparticles
原文传递
Tracking Regulatory Mechanism of Trace Fe on Graphene Electromagnetic Wave Absorption 被引量:2
7
作者 Kaili Zhang Yuhao Liu +5 位作者 Yanan Liu Yuefeng Yan Guansheng Ma Bo Zhong Renchao Che Xiaoxiao Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期79-96,共18页
Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the... Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide(RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss(RLmin) of Fe/RGO-2composite reaches-53.38 dB(2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz(2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content,which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials. 展开更多
关键词 Reduced graphene oxide Fe nanosheets Dielectric loss Electromagnetic wave absorption
下载PDF
Aggregation-regulated bioreduction process of graphene oxide by Shewanella bacteria
8
作者 Kaixin Han Yibo Zeng +2 位作者 Yinghua Lu Ping Zeng Liang Shen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期56-62,共7页
The bioreduction of graphene oxide(GO)using environmentally functional bacteria such as Shewanella represents a green approach to produce reduced graphene oxide(rGO).This process differs from the chemical reduction th... The bioreduction of graphene oxide(GO)using environmentally functional bacteria such as Shewanella represents a green approach to produce reduced graphene oxide(rGO).This process differs from the chemical reduction that involves instantaneous molecular reactions.In bioreduction,the contact of bacterial cells and GO is considered the rate-limiting step.To reveal how the bacteria-GO integration regulates rGO production,the comparative experiments of GO and three Shewanella strains were carried out.Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy,Raman spectroscopy,and atomic force microscopy were used to characterize the reduction degree and the aggregation degree.The results showed that a spontaneous aggregation of GO and Shewanella into the condensed entity occurred within 36 h.A positive linear correlation was established,linking three indexes of the aggregation potential,the bacterial reduction ability,and the reduction degree(ID/IG)comprehensively. 展开更多
关键词 graphene oxide Reduced graphene oxide BIOREDUCTION AGGREGATION SHEWANELLA
下载PDF
In vitro investigations on the effects of graphene and graphene oxide on polycaprolactone bone tissue engineering scaffolds
9
作者 Yanhao Hou Weiguang Wang Paulo Bartolo 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第5期651-669,共19页
Polycaprolactone(PCL)scaffolds that are produced through additive manufacturing are one of the most researched bone tissue engineering structures in the field.Due to the intrinsic limitations of PCL,carbon nanomateria... Polycaprolactone(PCL)scaffolds that are produced through additive manufacturing are one of the most researched bone tissue engineering structures in the field.Due to the intrinsic limitations of PCL,carbon nanomaterials are often investigated to reinforce the PCL scaffolds.Despite several studies that have been conducted on carbon nanomaterials,such as graphene(G)and graphene oxide(GO),certain challenges remain in terms of the precise design of the biological and nonbiological properties of the scaffolds.This paper addresses this limitation by investigating both the nonbiological(element composition,surface,degradation,and thermal and mechanical properties)and biological characteristics of carbon nanomaterial-reinforced PCL scaffolds for bone tissue engineering applications.Results showed that the incorporation of G and GO increased surface properties(reduced modulus and wettability),material crystallinity,crystallization temperature,and degradation rate.However,the variations in compressive modulus,strength,surface hardness,and cell metabolic activity strongly depended on the type of reinforcement.Finally,a series of phenomenological models were developed based on experimental results to describe the variations of scaffold’s weight,fiber diameter,porosity,and mechanical properties as functions of degradation time and carbon nanomaterial concentrations.The results presented in this paper enable the design of three-dimensional(3D)bone scaffolds with tuned properties by adjusting the type and concentration of different functional fillers. 展开更多
关键词 Additive manufacturing Bone tissue engineering Carbon nanomaterial graphene graphene oxide SCAFFOLD
下载PDF
Removal of rubidium from brine by an integrated film of sulfonated polysulfone/graphene/potassium copper ferricyanide
10
作者 Huanxi Xu Peihua Lin +6 位作者 Pei-Jun Liu Hai-Gang Liu Hui-Bin Guo Chao-Xiang Wu Ming Fang Xu Zhang Guan-Ping Jin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期112-121,共10页
A novel integrated film of sulfonated polysulfone/graphene/potassium copper ferricyanide(KCuFC/SPSG)was used for selectively extracting rubidium ion(Rb^(+))from brine.To form KCuFC/SPSG,the precursor film of sulfonate... A novel integrated film of sulfonated polysulfone/graphene/potassium copper ferricyanide(KCuFC/SPSG)was used for selectively extracting rubidium ion(Rb^(+))from brine.To form KCuFC/SPSG,the precursor film of sulfonated polysulfone/graphene(SPSG)was synthesized by phase conversion process,which was alternately immersed in 0.1 mol·L^(-1)CuSO_(4)/K_(4)[Fe(CN)_(6)]by in-situ adsorption coupled co-precipitation method.Various data such as nuclear magnetic resonance spectrometer,Fourier transform infrared spectroscope,X-ray photoelectron spectroscope,X-ray diffraction,scanning electron microscope,and energy dispersive spectroscopy all verified that abundant KCuFC were uniformly located on the film.The resulting KCuFC/SPSG was used in film separation system.As the solution was fed into the system,the Rb^(+)could be selectively adsorption by KCuFC/SPSG.After the saturation adsorption,0.5 mol·L^(-1)NH_(4)Cl/HCl was fed into the film cell,Rb^(+)could be quickly desorbed by ion-exchange between Rb^(+)and NH_(4)^(+)in the lattice of KCuFC.The purpose of separating and recovering Rb^(+)from the brine can be achieved after the repeated operation.The effects of pH,adsorption time,and interferential ions on the adsorption capacity of Rb^(+)were investigated by batch experiments.The adsorption behavior fits the pseudo-second order kinetic process,while KCuFC has a higher adsorption capacity(Langmuir maximum sorption 165.4 mg·g^(-1)).In addition,KCuFC/SPSG shows excellent selectivity for Rb^(+)even in complex brine systems.KCuFC/SPSG could maintain 93.5%extraction efficiency after five adsorption/desorption cycles. 展开更多
关键词 Rubidium extraction Potassium copper ferricyanide Sulfonated polysulfone graphene oxide Adsorption
下载PDF
Regulation of interlayer channels of graphene oxide nanosheets in ultra-thin Pebax mixed-matrix membranes for CO_(2) capture
11
作者 Feifan Yang Yuanhang Jin +5 位作者 Jiangying Liu Haipeng Zhu Rong Xu Fenjuan Xiangli Gongping Liu Wanqin Jin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期257-267,共11页
For the application of carbon capture by membrane process,it is crucial to develop a highly permeable CO_(2)-selective membrane.In this work,we reported an ultra-thin polyether-block-amide(Pebax)mixedmatrix membranes(... For the application of carbon capture by membrane process,it is crucial to develop a highly permeable CO_(2)-selective membrane.In this work,we reported an ultra-thin polyether-block-amide(Pebax)mixedmatrix membranes(MMMs)incorporated by graphene oxide(GO),in which the interlayer channels were regulated to optimize the CO_(2)/N_(2) separation performance.Various membrane preparation conditions were systematically investigated on the influence of the membrane structure and separation performance,including the lateral size of GO nanosheets,GO loading,thermal reduction temperature,and time.The results demonstrated that the precisely regulated interlayer channel of GO nanosheets can rapidly provide CO_(2)-selective transport channels due to the synergetic effects of size sieving and preferential adsorption.The GO/Pebax ultra-thin MMMs exhibited CO_(2)/N_(2) selectivity of 72 and CO_(2) permeance of 400 GPU(1 GPU=106 cm^(3)(STP)·cm^(2)·s^(-1)·cmHg^(-1)),providing a promising candidate for CO_(2) capture. 展开更多
关键词 Mixed-matrix membrane Ultra-thin membrane Pebax graphene oxide CO_(2) capture
下载PDF
Ultrahydrophobic melamine sponge via interfacial modification with reduced graphene oxide/titanium dioxide nanocomposite and polydimethylsiloxane for oily wastewater treatment
12
作者 Hamidatu Alhassan Ying Woan Soon +1 位作者 Anwar Usman Voo Nyuk Yoong 《Water Science and Engineering》 EI CAS CSCD 2024年第2期139-149,共11页
Three-dimensional(3D)porous absorbents have attracted significant attention in the oily wastewater treatment technology due to their high porosity and elasticity.Given their amphiphilic surface,they have a propensity ... Three-dimensional(3D)porous absorbents have attracted significant attention in the oily wastewater treatment technology due to their high porosity and elasticity.Given their amphiphilic surface,they have a propensity to simultaneously absorb water and oil,which restricts their range of applications.In this study,a reduced graphene oxide and titanium dioxide nanocomposite(rGO/TiO_(2))was used to fabricate an ultra-hydrophobic melamine sponge(MS)through interfacial modification using a solution immersion technique.To further modify it,poly-dimethylsiloxane(PDMS)was grafted onto its surface to establish stronger covalent bonds with the composite.The water contact angle of the sponge(rGO/TiO_(2)/PDMS/MS)was 164.2°,which satisfies the condition for ultrahydrophobicity.The evidence of its water repellency was demonstrated by the Cassie-Baxter theory and the lotus leaf effect.As a result of the increased density of rGO/TiO_(2)/PDMS/MS,it recorded an initial capacity that was 2 g/g lower than the raw MS for crude oil absorption.The raw MS retained 53% of its initial absorption capacity after 20 cycles of absorption,while rGO/TiO_(2)/PDMS/MS retained 97%,suggesting good recyclability.Excellent oil and organic solvent recovery(90%-96%)was demonstrated by rGO/TiO_(2)/PDMS/MS in oil-water combinations.In a continuous separation system,it achieved a remarkable separation efficiency of 2.4×10^(6)L/(m^(3)·h),and in turbulent emulsion separation,it achieved a demulsification efficiency of 90%-91%.This study provides a practical substitute for massive oil spill cleaning. 展开更多
关键词 Oily wastewater Reduced graphene oxide Polydimethylsiloxane(PDMS) Emulsion separation Melamine sponge
下载PDF
Mussel-inspired Methacrylic Gelatin-dopamine/Ag Nanoparticles/Graphene Oxide Hydrogels with Improved Adhesive and Antibacterial Properties for Applications as Wound Dressings
13
作者 宿正楠 HU Yanru +5 位作者 MENG Lihui OUYANG Zhiyuan LI Wenchao ZHU Fang XIE Bin 吴庆知 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期512-521,共10页
A novel strategy was developed to prepare the methacrylic gelatin-dopamine(GelMA-DA)/Ag nanoparticles(NPs)/graphene oxide(GO) composite hydrogels with good biocompatibility,mechanical properties,and antibacterial acti... A novel strategy was developed to prepare the methacrylic gelatin-dopamine(GelMA-DA)/Ag nanoparticles(NPs)/graphene oxide(GO) composite hydrogels with good biocompatibility,mechanical properties,and antibacterial activity.Mussel-inspired DA was utilized to modify the GelMA molecules,which imparts good adhesive performance to the hydrogels.GO,interfacial enhancer,not only improves mechanical properties of the hydrogels,but also provides anchor sites for loading Ag NPs through numerous oxygencontaining functional groups on the surface.The experimental results show that the GelMA/Ag NPs/GO hydrogels have good biocompatibility,and exhibit a swelling rate of 202±16%,the lap shear strength of 147±17 kPa,and compressive modulus of 136±53 kPa,in the case of the Ag NPs/GO content of 2 mg/mL.Antibacterial activity of the hydrogels against both gram-negative and gram-positive bacteria is dependent on the Ag NPs/GO content derived from the release of Ag^(+).Furthermore,the GelMA/Ag NPs/GO hydrogels possess good adhesive ability,which is resistant to highly twisted state when stuck on the surface of pigskin.These results demonstrate promising potential of the GelMA-DA/Ag NPs/GO hydrogels as wound dressings for biomedical applications in clinical and emergent treatment. 展开更多
关键词 GelMA dopamine graphene oxide adhesion antibacterial ability
下载PDF
Improving the operational stability of perovskite solar cells with cesium-doped graphene oxide interlayer
14
作者 Masaud Almalki Katerina Anagnostou +15 位作者 Konstantinos Rogdakis Felix T.Eickemeyer Mostafa Othman Minas M.Stylianakis Dimitris Tsikritzis Anwar Q.Alanazi Nikolaos Tzoganakis Lukas Pfeifer Rita Therisod Xiaoliang Mo Christian M.Wolff Aïcha Hessler-Wyser Shaik M.Zakeeruddin Hong Zhang Emmanuel Kymakis Michael Grätzel 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期483-490,共8页
Perovskite solar cells(PSCs)have made great advances in terms of power conversion efficiency(PCE),yet their subpar stability continues to hinder their commercialization.The interface between the perovskite layer and t... Perovskite solar cells(PSCs)have made great advances in terms of power conversion efficiency(PCE),yet their subpar stability continues to hinder their commercialization.The interface between the perovskite layer and the charge-carrier transporting layers plays a crucial role in undermining the stability of PSCs.In this work,we propose a strategy to stabilize high-performance PSCs with PCE over 23%by introducing a cesium-doped graphene oxide(GO-Cs)as an interlayer between the perovskite and hole-transporting material.The GO-Cs treated PSCs exhibit excellent operational stability with a projected T80(the time where the device PCE reduces to 80%of its initial value)of 2143 h of operation at the maximum powering point under one sun illumination. 展开更多
关键词 Perovskite solar cells Doped graphene oxide graphene related material Long-term operational stability
下载PDF
Mixed‑Dimensional Assembly Strategy to Construct Reduced Graphene Oxide/Carbon Foams Heterostructures for Microwave Absorption,Anti‑Corrosion and Thermal Insulation
15
作者 Beibei Zhan Yunpeng Qu +8 位作者 Xiaosi Qi Junfei Ding Jiao‑jing Shao Xiu Gong Jing‑Liang Yang Yanli Chen Qiong Peng Wei Zhong Hualiang Lv 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期1-18,共18页
Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective int... Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges.Herein,reduced graphene oxide/carbon foams(RGO/CFs)with two-dimensional/three-dimensional(2D/3D)van der Waals(vdWs)heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying,immersing absorption,secondary freeze-drying,followed by carbonization treatment.Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching,the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances,achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of-50.58 dB with the low matching thicknesses.Furthermore,the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties,good corrosion resistance performances as well as outstanding thermal insulation capabilities,displaying the great potential in complex and variable environments.Accordingly,this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures,but also outlined a powerful mixeddimensional assembly strategy for engineering multifunctional foams for electromagnetic protection,aerospace and other complex conditions. 展开更多
关键词 Multifunctionality Reduced graphene oxide/carbon foams 2D/3D van der Waals heterostructures Electromagnetic wave absorption Thermal insulation
下载PDF
The Effect of Graphene Oxide on Mechanical Properties of Cement Mortar
16
作者 Lei FAN Jinhao ZHENG 《Research and Application of Materials Science》 2024年第1期1-4,共4页
Cement is widely used in engineering applications,but it has both the characteristics of high brittleness and poor bending resistance.In this paper,the effects of different amounts ofgraphene oxide on the flexural str... Cement is widely used in engineering applications,but it has both the characteristics of high brittleness and poor bending resistance.In this paper,the effects of different amounts ofgraphene oxide on the flexural strength and compressive strength of cement mortar were studied by doping a certain amount of graphene oxide with cement mortar,and the strengthening mechanism of graphene oxide on cement mortar was obtained through microstructure detection.It is found that graphene oxide has a significant enhancement effect on the macroscopic mechanical properties of cement mortar,and graphene oxide provides nano-nucleation sites and growth templates for cement mortar,accelerates the hydration process,reduces the voids between hydration products,greatly increases the compactness,and improves the macroscopic properties of cement-based materials. 展开更多
关键词 graphene oxide Cement mortar Mechanical properties Microscopic analysis
下载PDF
Application of graphene oxides and graphene oxide-based nanomaterials in radionuclide removal from aqueous solutions 被引量:17
17
作者 Xiangxue Wang Shujun Yu +5 位作者 Jie Jin Hongqing Wang Njud S. Alharbi Ahmed Alsaedi Tasawar Hayat Xiangke Wang 《Science Bulletin》 SCIE EI CAS CSCD 2016年第20期1583-1593,共11页
With the fast development of nanoscience and nanotechnology,the nanomaterials have attracted multidisciplinary interests.The high specific surface area and large numbers of oxygen-containing functional groups of graph... With the fast development of nanoscience and nanotechnology,the nanomaterials have attracted multidisciplinary interests.The high specific surface area and large numbers of oxygen-containing functional groups of graphene oxides(GOs) make them suitable in the preconcentration and solidification of radionuclides from wastewater.In this paper,mainly based on the recent work carried out in our laboratory,the efficient elimination of radionuclides using GOs and GO-based nanomaterials as adsorbents are summarized and the interaction mechanisms are discussed from the results of batch techniques,surface complexation modeling,spectroscopic analysis and theoretical calculations.This review is helpful for the understanding of the interactions of radionuclides with GOs and GO-based nanomaterials,which is also crucial for the application of GOs and GO-based nanomaterials in environmental radionuclide pollution management and also helpful in nuclear waste management. 展开更多
关键词 graphene oxides Radionuclides SORPTION Interaction mechanism Theoretical calculation Spectroscopic analysis
原文传递
Understanding the adsorption mechanism of Ni(II) on graphene oxides by batch experiments and density functional theory studies 被引量:6
18
作者 Yuantao Chen WeiZhang +3 位作者 Shubin Yang Aatef Hobiny Ahmed Alsaedi Xiangke Wang 《Science China Chemistry》 SCIE EI CAS CSCD 2016年第4期412-419,共8页
The graphene oxides (GOs) have attracted multidisciplinary study because of their special physicochemical properties. The high surface area and large amounts of oxygen-containing functional groups make GOs suitable ... The graphene oxides (GOs) have attracted multidisciplinary study because of their special physicochemical properties. The high surface area and large amounts of oxygen-containing functional groups make GOs suitable materials for the efficient elimination of heavy metal ions from aqueous solutions. Herein the sorption of Ni(Ⅱ) on GOs was studied using batch experi- ments, and the results showed that the sorption of Ni(Ⅱ) is strongly dependent on pH and ionic strength at pH〈8, and inde- pendent of ionic strength at pH〉8. The sorption of Ni(Ⅱ) is mainly dominated by outer-sphere surface complexation and ion exchange at low pH, and by inner-sphere surface complexation at high pH. The interaction of Ni(Ⅱ) with GOs was also inves- tigated by theoretical density functional theory (DFT) calculations, and the results show that the sorption of Ni(Ⅱ) on GOs is mainly attributed to the -COH and -COC groups and the DFT calculations show that Ni(Ⅱ) forms stable GO_Ni_triplet struc- ture with the binding energy of -39.44 kcal/mol, which is in good agreement with the batch sorption experimental results. The results are important for the application of GOs as adsorbents in the efficient removal of Ni(Ⅱ) from wastewater in environ- mental pollution cleanup. 展开更多
关键词 graphene oxides Ni(Ⅱ) SORPTION DFT calculation
原文传递
Graphene oxides for simultaneous highly efficient removal of trace level radionuclides from aqueous solutions 被引量:5
19
作者 Xiangxue Wang Zhongshan Chen Xiangke Wang 《Science China Chemistry》 SCIE EI CAS CSCD 2015年第11期1766-1773,共8页
Graphene oxides(GOs) were synthesized via modified Hummers method, and were applied as adsorbents to remove radionuclides from large volumes of aqueous solutions. The single and competitive sorption of four radionucli... Graphene oxides(GOs) were synthesized via modified Hummers method, and were applied as adsorbents to remove radionuclides from large volumes of aqueous solutions. The single and competitive sorption of four radionuclides(i.e., U(VI), 152+154Eu(III), 85+89Sr(II) and 134Cs(I)) on the GOs from aqueous solutions were investigated as a function of p H, ionic strength and radionuclide initial concentrations using batch technique. The results showed that the GOs had much higher sorption capacity than many other contemporary materials, for the preconcentration of radionuclides from large volumes of aqueous solutions. The sorption of radionuclides on GOs obeyed the Langmuir model, and was mainly attributed to surface complexation via the coordination of radionuclides with the oxygen-containing functional groups on GO surfaces. The competitive sorption results indicated that the selectivity sorption capacities were U(VI)>Eu(III)>Sr(II)>Cs(I). The GOs are suitable materials for the efficient removal and preconcentration of radionuclides from aqueous solutions in nuclear waste management and environmental pollution cleanup. 展开更多
关键词 graphene oxides radionuclides SORPTION nuclear wastewater treatment
原文传递
Ozonated graphene oxides as high efficient sorbents for Sr(Ⅱ) and U(Ⅵ) removal from aqueous solutions 被引量:6
20
作者 Xia Liu Xiangxue Wang +1 位作者 Jiaxing Li XiangkeWang 《Science China Chemistry》 SCIE EI CAS CSCD 2016年第7期869-877,共9页
Ozone was used to oxidize graphene oxides (GO) to generate ozonated graphene oxides (OGO) with higher oxygen-containing functional groups. The as-prepared OGO was characterized by Fourier transformed infrared spec... Ozone was used to oxidize graphene oxides (GO) to generate ozonated graphene oxides (OGO) with higher oxygen-containing functional groups. The as-prepared OGO was characterized by Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Based on the results of potentiometric acid-base ti- trations, the total carboxylic acid concentration on OGO surface was calculated to be 3.92 retool/g, which was much higher than that on GO surface. The results of adsorption experiments indicated that the adsorption capacities of OGO for Sr(II) and U(VI) removal were improved significantly after ozonization. 展开更多
关键词 OZONE graphene oxide ADSORPTION Sr(II) U(VI)
原文传递
上一页 1 2 34 下一页 到第
使用帮助 返回顶部