期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Numerical Simulation on Thermal-Electrical Characteristics and Electrode Patterns of GaN LEDs with Graphene/NiO_x Hybrid Electrode 被引量:3
1
作者 闫泉喜 张淑芳 +5 位作者 龙兴明 罗海军 吴芳 方亮 魏大鹏 廖梅勇 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第7期186-190,共5页
The thermal-electrical characteristic of a GaN light-emitting diode (LED) with the hybrid transparent conductive layers (TCLs) of graphene (Gr) and NiOx is investigated by a finite element method. It is indicate... The thermal-electrical characteristic of a GaN light-emitting diode (LED) with the hybrid transparent conductive layers (TCLs) of graphene (Gr) and NiOx is investigated by a finite element method. It is indicated that the LED with the compound TCL of 3-layer Gr and 1 nm NiOx has the best thermal-electrical performance from the view point of the maximum temperature and the current density deviation of multiple quantum wells, and the maximum temperature occurs near the n-electrode rather than p-electrode. Furthermore, to depress the current crowding on the LED, the electrode pattern parameters including p- and n-electrode length, p-electrode buried depth and the distance of n-electrode to active area are optimized. It is found that either increasing p- or n-electrode length and buried depth or decreasing the distance of n-electrode from the active area will decrease the temperature of the LED, while the increase of the n-electrode length has more prominent effect. Typically, when the n-electrode length increases to 0.8 times of the chip size, the temperature of the GaN LED with the inm NiOx/3-1ayer-Gr hybrid TCLs could drop about 7K and the current density uniformity could increase by 23.8%, compared to 0.4 times of the chip size. This new finding will be beneficial for improvement of the thermal- electrical performance of LEDs with various conductive TCLs such as NiOx/Gr or ITO/Gr as current spreading layers. 展开更多
关键词 LEDS GAN Numerical Simulation on Thermal-Electrical Characteristics and Electrode patterns of GaN LEDs with graphene/NiO_x Hybrid Electrode of NIO with on
下载PDF
Nanoindentation Models of Monolayer Graphene and Graphyne under Point Load Pattern Studied by Molecular Dynamics
2
作者 向浪 吴建 +2 位作者 马双英 王芳 张凯旺 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第9期108-111,共4页
Molecular dynamics simulations are performed to study the nanoindentation models of monolayer suspended graphene and graphyne. Fullerenes are selected as indenters. Our results show that Young's modulus of monolayer-... Molecular dynamics simulations are performed to study the nanoindentation models of monolayer suspended graphene and graphyne. Fullerenes are selected as indenters. Our results show that Young's modulus of monolayer-thick graphyne is almost half of that of graphene, which is estimated to be 0.50 TPa. The mechanical properties of graphene and graphyne are different in the presence of strain. A pre-tension has an important effect on the mechanical properties of a membrane. Both the pre-tension and Young's modulus plots demonstrate index behavior. The toughness of graphyne is stronger than that of graphene due to Young's modulus magnitude. Young's moduli of graphene and graphyne are almost independent of the size ratio of indenter to membrane. 展开更多
关键词 Nanoindentation Models of Monolayer graphene and Graphyne under Point Load pattern Studied by Molecular Dynamics
下载PDF
Direct mask-free fabrication of patterned hierarchical graphene electrode for on-chip micro-supercapacitors
3
作者 Yaopeng Wu Jinghong Chen +11 位作者 Wei Yuan Xiaoqing Zhang Shigen Bai Yu Chen Bote Zhao Xuyang Wu Chun Wang Honglin Huang Yong Tang Zhenping Wan Shiwei Zhang Yingxi Xie 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第12期12-19,共8页
Graphene-based electrodes with rational structural design have shown extraordinary prospect for en-hanced electrical double-layer capacitance of micro-supercapacitors(MSCs).Herein,a facile fabrication method for flexi... Graphene-based electrodes with rational structural design have shown extraordinary prospect for en-hanced electrical double-layer capacitance of micro-supercapacitors(MSCs).Herein,a facile fabrication method for flexible planar MSCs based on hierarchical graphene was demonstrated by using a laser-treated membrane for electrode patterning,complemented with hierarchical electrode configuration tak-ing full advantages of size-determined functional graphene.The in-plane interdigital shape of MSCs was defined through vacuum filtration with the assistance of the functionalized polypropylene(PP)mem-brane.The hierarchical graphene films were built by macroscopic assembly based on size effect of differ-ent lateral sized graphene sheets(rGO-LSL).The sample of MSCs based on rGO-L SL(MSCs-LSL)exhibited excellent volumetric capacitance of 6.7 F cm^(−3) and high energy density of 0.37 mWh cm−3.The MSCs-LSL presented superb flexibility and cycling stability with no capacitance deteroriated after 2000 cycles.This newly developed fabrication strategy is of good scalability and designability to manufacture flexible elec-trode for MSCs with customized shapes,while the construction of hierarchical graphene can enlighten the structural design of analogous two-dimensional materials for potential advanced electronics. 展开更多
关键词 On-chip micro-supercapacitors Mask-free fabrication Macroscopic assembly patterned graphene film Hierarchical structure
原文传递
Graphene-metasurface for wide-incident-angle terahertz absorption
4
作者 Ri-hui XIONG Xiao-qing PENG Jiu-sheng LI 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2021年第3期334-340,共7页
We demonstrate a graphene-metasurface structure for tunable wide-incident-angle terahertz wave absorption,which involves depositing planar arrays of Omega-shaped graphene patterns on a silicon dioxide substrate.We als... We demonstrate a graphene-metasurface structure for tunable wide-incident-angle terahertz wave absorption,which involves depositing planar arrays of Omega-shaped graphene patterns on a silicon dioxide substrate.We also discuss how the graphene Fermi-level layer and various substrates affect the absorption characteristics.The absorption of the proposed terahertz absorber is above 80%at an incident angle of 0°–60°in frequencies ranging from 0.82 to 2.0 THz.Our results will be very beneficial in the application of terahertz wave communications and biomedical imaging/sensing systems. 展开更多
关键词 graphene-metasurface Terahertz absorber Omega-shaped graphene patterns
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部