We theoretically investigate the transport property of graphene surface plasmon polaritons(GSPPs) on curved graphene substrates. The dispersion relationship, propagation length, and field confinement are calculated by...We theoretically investigate the transport property of graphene surface plasmon polaritons(GSPPs) on curved graphene substrates. The dispersion relationship, propagation length, and field confinement are calculated by an analytical method and compared with those on planar substrates. Based on our theory, the bend of graphene nearly does not affect the property of GSPPs except for an extremely small shift to the lower frequency for the same effective mode index. The field distributions and the eigenfrequencies of GSPPs on planar and cylindrical substrates are calculated by the finite element method, which validates our theoretical analysis. Moreover, three types of graphene-guided optical interconnections of GSPPs, namely, planar to curved graphene film, curved to planar graphene film, and curved to curved graphene film, are proposed and examined in detail. The theoretical results show that the GSPPs propagation on curved graphene substrates and interconnections will not induce any additional losses if the phase-matching condition is satisfied. Additionally, the extreme tiny size of curved graphene for interconnection at a certain spectra range is predicted by our theory and validated by the simulation of 90° turning of GSPPs. The bending effect on the property of GSPPs is systematically analyzed and identified. Our studies would be helpful to instruct design of plasmonic devices involving curved GSPPs, such as nanophotoniccircuits, flexible plasmonic, and biocompatible devices.展开更多
We proposed a graphene based active plasmonic device by the introduction of graphene-MoS_(2) heterostructures. The device was composed of a monolayer MoS_(2) layer between the silicon substrate and periodically arrang...We proposed a graphene based active plasmonic device by the introduction of graphene-MoS_(2) heterostructures. The device was composed of a monolayer MoS_(2) layer between the silicon substrate and periodically arranged graphene nanoribbon arrays. The finite-difference time domain(FDTD) method was used to analyze and compare the changes of the surface plasmon resonant wavelength and modulation depth(MD) in the two cases with and without MoS_(2). It was found that all the parameters of the width, period and Fermi level of the graphene nanoribbons affect the surface plasmon resonant wavelength of the plasmonic device. The introduction of the monolayer MoS_(2) can produce a redshift about 3 μm of the surface plasmon resonant wavelength, while the MD is basically unchanged. The redshift of the graphene surface plasmon resonant wavelength will provide application prospects for new active graphene plasmonic devices.展开更多
A single sheet of graphene exhibits the ability to turn polarization of light by several degrees in modest magnetic fields. Here we demonstrate that giant angle rotation in graphene in the terahertz range can be reali...A single sheet of graphene exhibits the ability to turn polarization of light by several degrees in modest magnetic fields. Here we demonstrate that giant angle rotation in graphene in the terahertz range can be realized and further increased by the introduction of surface plasmon and constructive Fabry Perot interference with the supporting substrate. The maximum Kerr rotation angle is up to 15° in a single layer of graphene ribbons at 6 TPIz for the applied magnetic field 4 T. Such a magnification in magneto-optical Kerr effect can be realized in a fairly large incident angle.展开更多
In this paper, the enhanced terahertz radiation transformed from surface plasmon polaritons, excited by a uniformly moving electron bunch, in a structure consisting of a monolayer graphene supported on a dielectric gr...In this paper, the enhanced terahertz radiation transformed from surface plasmon polaritons, excited by a uniformly moving electron bunch, in a structure consisting of a monolayer graphene supported on a dielectric grating with arbitrary profile is investigated. The results show that the grating profile has significant influence on the dispersion curves and radiation characteristics including radiation frequency and intensity. The dependence of dispersion and radiation characteristics on the grating shape for both the symmetric and asymmetric gratings is studied in detail. Moreover, we find that, for an asymmetric grating with certain profile, there exist two different diffraction types, and one of the two types can provide higher radiation intensity comparing to the other one. These results will definitely facilitate the practical application in developing a room-temperature, tunable, coherent and miniature terahertz radiation source.展开更多
We propose an ultra-thin glass film coated with graphene as a new kind of surrounding material which can greatly enhance spontaneous emission rate(SER) of dipole emitter embedded in it. With properly designed paramete...We propose an ultra-thin glass film coated with graphene as a new kind of surrounding material which can greatly enhance spontaneous emission rate(SER) of dipole emitter embedded in it. With properly designed parameters,numerical results show that SER-enhanced factors as high as 1.286 9 106 can be achieved. The influences of glass film thickness and chemical potential/doping level of graphene on spontaneous emission enhancement are also studied in this paper. A comparison is made between graphene and other coating materials such as gold and silver to see their performances in SER enhancement.展开更多
According to first principle simulations, we theoretically predict a type of stable single-layer graphene oxide(C_2O).Using density functional theory(DFT), C_2O is found to be a direct gap semiconductor. In additi...According to first principle simulations, we theoretically predict a type of stable single-layer graphene oxide(C_2O).Using density functional theory(DFT), C_2O is found to be a direct gap semiconductor. In addition, we obtain the absorption spectra of the periodic structure of C_2O, which show optical anisotropy. To study the optical properties of C_2O nanostructures, time-dependent density functional theory(TDDFT) is used. The C_2O nanostructure has a strong absorption near 7 eV when the incident light polarizes along the armchair-edge. Besides, we find that the optical properties can be controlled by the edge configuration and the size of the C_2O nanostructure. With the elongation strain increasing, the range of light absorption becomes wider and there is a red shift of absorption spectrum.展开更多
In this paper, we have shown that perfect absorption at terahertz frequencies can be achieved by using a composite structure where graphene is coated on one-dimensional photonic crystal(1 DPC) separated by a dielectri...In this paper, we have shown that perfect absorption at terahertz frequencies can be achieved by using a composite structure where graphene is coated on one-dimensional photonic crystal(1 DPC) separated by a dielectric. Due to the excitation of optical Tamm states(OTSs) at the interface between the graphene and 1 DPC, a strong absorption phenomenon occurs induced by the coupling of the incident light and OTSs. Although the perfect absorption produced by a metal–distributed Bragg reflector structure has been researched extensively, it is generally at a fixed frequency and not tunable. Here, we show that the perfect absorption at terahertz frequency not only can be tuned to different frequencies but also exhibits a high absorption over a wide angle range. In addition,the absorption of the proposed structure is insensitive to the polarization, and multichannel absorption can berealized by controlling the thickness of the top layer.展开更多
Graphene-based surface plasmon waveguides(SPWs) show high confinement well beyond the diffraction limit at terahertz frequencies. By combining a graphene SPW and nonlinear material, we propose a novel graphene/AlGaAs ...Graphene-based surface plasmon waveguides(SPWs) show high confinement well beyond the diffraction limit at terahertz frequencies. By combining a graphene SPW and nonlinear material, we propose a novel graphene/AlGaAs SPW structure for terahertz wave difference frequency generation(DFG) under near-infrared pumps.The composite waveguide, which supports single-mode operation at terahertz frequencies and guides two pumps by a high-index-contrast AlGaAs∕Al Oxstructure, can confine terahertz waves tightly and realize good mode field overlap of three waves. The phase-matching condition is satisfied via artificial birefringence in an AlGaAs∕Al Ox waveguide together with the tunability of graphene, and the phase-matching terahertz wave frequency varies from 4 to 7 THz when the Fermi energy level of graphene changes from 0.848 to 2.456 eV. Based on the coupled-mode theory, we investigate the power-normalized conversion efficiency for the tunable terahertz wave DFG process by using the finite difference method under continuous wave pumps, where the tunable bandwidth can reach 2 THz with considerable conversion efficiency. To exploit the high peak powers of pulses, we also discuss optical pulse evolutions for pulse-pumped terahertz wave DFG processes.展开更多
Multiple resonant excitations of surface plasmons in a graphene stratified slab are realized by Otto configuration at terahertz frequencies. The proposed graphene stratified slab consists of alternating dielectric lay...Multiple resonant excitations of surface plasmons in a graphene stratified slab are realized by Otto configuration at terahertz frequencies. The proposed graphene stratified slab consists of alternating dielectric layers and graphene sheets, and is sandwiched between a prism and another semi-infinite medium. Optical response and field distribution are determined by the transfer matrix method with the surface current density boundary condition.Multiple resonant excitations appear on the angular reflection spectrum, and are analyzed theoretically via the phase-matching condition. Furthermore, the effects of the system parameters are investigated. Among them, the Fermi levels can tune the corresponding resonances independently. The proposed concept can be engineered for promising applications, including angular selective or multiplex filters, multiple channel sensors, and directional delivery of energy.展开更多
基金supported by the 973 Program of China (nos. 2013CB632704 and 2011CB922002)the National Natural Science Foundation of China (no. 11204365)
文摘We theoretically investigate the transport property of graphene surface plasmon polaritons(GSPPs) on curved graphene substrates. The dispersion relationship, propagation length, and field confinement are calculated by an analytical method and compared with those on planar substrates. Based on our theory, the bend of graphene nearly does not affect the property of GSPPs except for an extremely small shift to the lower frequency for the same effective mode index. The field distributions and the eigenfrequencies of GSPPs on planar and cylindrical substrates are calculated by the finite element method, which validates our theoretical analysis. Moreover, three types of graphene-guided optical interconnections of GSPPs, namely, planar to curved graphene film, curved to planar graphene film, and curved to curved graphene film, are proposed and examined in detail. The theoretical results show that the GSPPs propagation on curved graphene substrates and interconnections will not induce any additional losses if the phase-matching condition is satisfied. Additionally, the extreme tiny size of curved graphene for interconnection at a certain spectra range is predicted by our theory and validated by the simulation of 90° turning of GSPPs. The bending effect on the property of GSPPs is systematically analyzed and identified. Our studies would be helpful to instruct design of plasmonic devices involving curved GSPPs, such as nanophotoniccircuits, flexible plasmonic, and biocompatible devices.
基金supported by the National Natural Science Foundation of China (Nos.11204107 and 91750112)。
文摘We proposed a graphene based active plasmonic device by the introduction of graphene-MoS_(2) heterostructures. The device was composed of a monolayer MoS_(2) layer between the silicon substrate and periodically arranged graphene nanoribbon arrays. The finite-difference time domain(FDTD) method was used to analyze and compare the changes of the surface plasmon resonant wavelength and modulation depth(MD) in the two cases with and without MoS_(2). It was found that all the parameters of the width, period and Fermi level of the graphene nanoribbons affect the surface plasmon resonant wavelength of the plasmonic device. The introduction of the monolayer MoS_(2) can produce a redshift about 3 μm of the surface plasmon resonant wavelength, while the MD is basically unchanged. The redshift of the graphene surface plasmon resonant wavelength will provide application prospects for new active graphene plasmonic devices.
基金Supported by the National Natural Science Foundation of China under Grant No 11474254
文摘A single sheet of graphene exhibits the ability to turn polarization of light by several degrees in modest magnetic fields. Here we demonstrate that giant angle rotation in graphene in the terahertz range can be realized and further increased by the introduction of surface plasmon and constructive Fabry Perot interference with the supporting substrate. The maximum Kerr rotation angle is up to 15° in a single layer of graphene ribbons at 6 TPIz for the applied magnetic field 4 T. Such a magnification in magneto-optical Kerr effect can be realized in a fairly large incident angle.
基金Project supported by the National Basic Research Program of China(Grant No.2014CB339801)the National Natural Science Foundation of China(Grant Nos.61231005,11305030,and 612111076)+1 种基金the Fundamental Research Funds for the Central Universities of China(Grant No.ZYGX2013J058)the National High-tech Research and Development Project of China(Grant No.2011AA010204)
文摘In this paper, the enhanced terahertz radiation transformed from surface plasmon polaritons, excited by a uniformly moving electron bunch, in a structure consisting of a monolayer graphene supported on a dielectric grating with arbitrary profile is investigated. The results show that the grating profile has significant influence on the dispersion curves and radiation characteristics including radiation frequency and intensity. The dependence of dispersion and radiation characteristics on the grating shape for both the symmetric and asymmetric gratings is studied in detail. Moreover, we find that, for an asymmetric grating with certain profile, there exist two different diffraction types, and one of the two types can provide higher radiation intensity comparing to the other one. These results will definitely facilitate the practical application in developing a room-temperature, tunable, coherent and miniature terahertz radiation source.
基金supported in part by the National Natural Science Foundation of China(Grant No.61177056)the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China(Grant No.708038)
文摘We propose an ultra-thin glass film coated with graphene as a new kind of surrounding material which can greatly enhance spontaneous emission rate(SER) of dipole emitter embedded in it. With properly designed parameters,numerical results show that SER-enhanced factors as high as 1.286 9 106 can be achieved. The influences of glass film thickness and chemical potential/doping level of graphene on spontaneous emission enhancement are also studied in this paper. A comparison is made between graphene and other coating materials such as gold and silver to see their performances in SER enhancement.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0303600)the National Natural Science Foundation of China(Grant Nos.11474207 and 11374217)
文摘According to first principle simulations, we theoretically predict a type of stable single-layer graphene oxide(C_2O).Using density functional theory(DFT), C_2O is found to be a direct gap semiconductor. In addition, we obtain the absorption spectra of the periodic structure of C_2O, which show optical anisotropy. To study the optical properties of C_2O nanostructures, time-dependent density functional theory(TDDFT) is used. The C_2O nanostructure has a strong absorption near 7 eV when the incident light polarizes along the armchair-edge. Besides, we find that the optical properties can be controlled by the edge configuration and the size of the C_2O nanostructure. With the elongation strain increasing, the range of light absorption becomes wider and there is a red shift of absorption spectrum.
基金National Natural Science Foundation of China(NSFC)(51806001,61490713,61505111)Natural Science Foundation of Guangdong Province(2015A030313549)+3 种基金China Postdoctoral Science Foundation(2016M602509)Science and Technology Planning Project of Guangdong Province(2016B050501005)Science and Technology Project of Shenzhen(JCYJ20150324141711667)Natural Science Foundation of SZU(827-000051,827-000052,827-000059)
文摘In this paper, we have shown that perfect absorption at terahertz frequencies can be achieved by using a composite structure where graphene is coated on one-dimensional photonic crystal(1 DPC) separated by a dielectric. Due to the excitation of optical Tamm states(OTSs) at the interface between the graphene and 1 DPC, a strong absorption phenomenon occurs induced by the coupling of the incident light and OTSs. Although the perfect absorption produced by a metal–distributed Bragg reflector structure has been researched extensively, it is generally at a fixed frequency and not tunable. Here, we show that the perfect absorption at terahertz frequency not only can be tuned to different frequencies but also exhibits a high absorption over a wide angle range. In addition,the absorption of the proposed structure is insensitive to the polarization, and multichannel absorption can berealized by controlling the thickness of the top layer.
基金National Natural Science Foundation of China(NSFC)(11547187,11405073,61405073)Shandong Provincial Key R&D Program(2017CXGC0416)
文摘Graphene-based surface plasmon waveguides(SPWs) show high confinement well beyond the diffraction limit at terahertz frequencies. By combining a graphene SPW and nonlinear material, we propose a novel graphene/AlGaAs SPW structure for terahertz wave difference frequency generation(DFG) under near-infrared pumps.The composite waveguide, which supports single-mode operation at terahertz frequencies and guides two pumps by a high-index-contrast AlGaAs∕Al Oxstructure, can confine terahertz waves tightly and realize good mode field overlap of three waves. The phase-matching condition is satisfied via artificial birefringence in an AlGaAs∕Al Ox waveguide together with the tunability of graphene, and the phase-matching terahertz wave frequency varies from 4 to 7 THz when the Fermi energy level of graphene changes from 0.848 to 2.456 eV. Based on the coupled-mode theory, we investigate the power-normalized conversion efficiency for the tunable terahertz wave DFG process by using the finite difference method under continuous wave pumps, where the tunable bandwidth can reach 2 THz with considerable conversion efficiency. To exploit the high peak powers of pulses, we also discuss optical pulse evolutions for pulse-pumped terahertz wave DFG processes.
基金National Natural Science Foundation of China(NSFC)(11604276,61601393,11501481)Key Scientific Project of Fujian Province in China(2015H0039)
文摘Multiple resonant excitations of surface plasmons in a graphene stratified slab are realized by Otto configuration at terahertz frequencies. The proposed graphene stratified slab consists of alternating dielectric layers and graphene sheets, and is sandwiched between a prism and another semi-infinite medium. Optical response and field distribution are determined by the transfer matrix method with the surface current density boundary condition.Multiple resonant excitations appear on the angular reflection spectrum, and are analyzed theoretically via the phase-matching condition. Furthermore, the effects of the system parameters are investigated. Among them, the Fermi levels can tune the corresponding resonances independently. The proposed concept can be engineered for promising applications, including angular selective or multiplex filters, multiple channel sensors, and directional delivery of energy.