期刊文献+
共找到45篇文章
< 1 2 3 >
每页显示 20 50 100
Graphene/Rh(111) Structure Studied Using In-Situ Scanning Tunneling Microscopy
1
作者 董国材 D.V.Baarle +1 位作者 J.Frenken 唐琪雯 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第11期71-73,共3页
Scanning tunnel microscopy (STM) is performed to verify if an Rh 'nails' structure is formed accompanying the graphene growing during chemical vapor deposition. A structure of a graphene island in an Rh vacancy is... Scanning tunnel microscopy (STM) is performed to verify if an Rh 'nails' structure is formed accompanying the graphene growing during chemical vapor deposition. A structure of a graphene island in an Rh vacancy island is used as the start. While the graphene island is removed by oxygenation, the variations of the Rh vacancy island are imaged with an in-situ high-temperature STM. By fitting with our model and calculations, we conclude that the best fit is obtained for 0% Rh, i.e., for the complete absence of nails below graphene on Rh(111). That is, when graphene is formed on Rh(111), the substrate remains fiat and does not develop a SUPPorting nail structure. 展开更多
关键词 graphene/Rh in is on for of Structure Studied Using In-Situ scanning tunneling microscopy
下载PDF
High quality sub-monolayer,monolayer,and bilayer graphene on Ru(0001)
2
作者 徐文焱 黄立 +6 位作者 阙炎德 李恩 张海刚 林晓 王业亮 杜世萱 高鸿钧 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第9期15-18,共4页
High quality sub-monolayer, monolayer, and bilayer graphene were grown on Ru(0001). For the sub-monolayer graphene, the size of graphene islands with zigzag edges can be controlled by the dose of ethylene exposure. ... High quality sub-monolayer, monolayer, and bilayer graphene were grown on Ru(0001). For the sub-monolayer graphene, the size of graphene islands with zigzag edges can be controlled by the dose of ethylene exposure. By increasing the dose of ethylene to 100 Langmuir at a high substrate temperature (800 ℃), high quality single-crystalline monolayer graphene was synthesized on Ru(0001). High quality bilayer graphene was formed by further increasing the dose of ethylene while reducing the cooling rate to 5 ℃/min. Raman spectroscopy revealed the vibrational states of graphene, G and 2D peaks appeared only in the bilayer graphene, which demonstrates that it behaves as the intrinsic graphene. Our present work affords methods to produce high quality sub-monolayer, monolayer, and bilayer graphene, both for basic research and applications. 展开更多
关键词 graphene ru(0001 scanning tunneling microscopy
下载PDF
Bimodal growth of Fe islands on graphene
3
作者 顾翊晟 俞俏滟 +16 位作者 刘荡 孙蓟策 席瑞骏 陈星森 薛莎莎 章毅 杜宪 宁旭辉 杨浩 管丹丹 刘晓雪 刘亮 李耀义 王世勇 刘灿华 郑浩 贾金锋 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期553-557,共5页
Magnetic metals deposited on graphene hold the key to applications in spintronics. Here, we present the results of Fe islands grown on graphene/Si C(0001) by molecular beam epitaxy, which are investigated by scanning ... Magnetic metals deposited on graphene hold the key to applications in spintronics. Here, we present the results of Fe islands grown on graphene/Si C(0001) by molecular beam epitaxy, which are investigated by scanning tunneling microscopy. The two types of islands distinguished by flat or round tops are revealed, indicating bimodal growth of Fe. The atomic structures on the top surfaces of flat islands are also clearly resolved. Our results may improve the understanding of the mechanisms of metals deposited on graphene and pave the way for future spintronic applications of Fe/graphene systems. 展开更多
关键词 graphene MAGNETISM molecular beam epitaxy scanning tunneling microscopy
下载PDF
Fabrication and properties of silicene and silicene–graphene layered structures on Ir(111) 被引量:1
4
作者 孟蕾 王业亮 +2 位作者 张理智 杜世萱 高鸿钧 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第8期25-34,共10页
Silicene, a two-dimensional(2D) honeycomb structure similar to graphene, has been successfully fabricated on various substrates. This work will mainly review the syntheses and the corresponding prope√rties o√f silic... Silicene, a two-dimensional(2D) honeycomb structure similar to graphene, has been successfully fabricated on various substrates. This work will mainly review the syntheses and the corresponding prope√rties o√f silicene and√ silice√ne–graphene layered structures on Ir(111) substrates. For silicene on Ir(111), the buckled(3 ×3) silicene/(7 ×7)Ir(111) configuration and its electronic structure are fully discussed. For silicene–graphene layered structures, silicene layer can be constructed underneath graphene layer by an intercalation method. These results indicate the possibility of integrating silicene with graphene and may link up with potential applications in nanoelectronics and related areas. 展开更多
关键词 SILICENE graphene epitaxial growth scanning tunneling microscopy
下载PDF
Template-directed assembly of pentacene molecules on epitaxial graphene on Ru(0001) 被引量:4
5
作者 Haitao Zhou Lizhi Zhang +6 位作者 Jinhai Mao Geng Li Yi Zhang Yeliang Wang Shixuan Du Werner A. Hofer Hong-Jun Gao 《Nano Research》 SCIE EI CAS CSCD 2013年第2期131-137,共7页
The template-directed assembly of planar pentacene molecules on epitaxial graphene grown on Ru(0001) (G/Ru) has been investigated by means of low-temperature scanning tunneling microscopy (STM) and density funct... The template-directed assembly of planar pentacene molecules on epitaxial graphene grown on Ru(0001) (G/Ru) has been investigated by means of low-temperature scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. STM experiments find that pentacene adopts a highly selective and dispersed growth mode in the initial stage. By using DFT calculations including van der Waals interactions, we find that the configuration with pentacene adsorbed on face-centered cubic (fcc) regions of G/Ru is the most stable one, which accounts for the selective adsorption at low coverage. Moreover, at high coverage, we have successfully controlled the molecular assembly from amorphous, local ordering, to long-range order by optimizing the deposition rate and substrate temperature. 展开更多
关键词 graphene ru(0001 PENTACENE SELF-ASSEMBLY scanning tunnelingmicroscopy (STM) density functionaltheory (DFT)
原文传递
Chevron-type graphene nanoribbons with a reduced energy band gap:Solution synthesis,scanning tunneling microscopy and electrical characterization 被引量:1
6
作者 Ximeng Liu Gang Li +5 位作者 Alexey Lipatov Tao Sun Mohammad Mehdi Pour Narayana R.Aluru Joseph W.Lyding Alexander Sinitskii 《Nano Research》 SCIE EI CAS CSCD 2020年第6期1713-1722,共10页
Graphene nanoribbons(GNRs)attract a growing interest due to their tunable physical properties and promise for device applications.A variety of atomically precise GNRs have recently been synthesized by on-surface and s... Graphene nanoribbons(GNRs)attract a growing interest due to their tunable physical properties and promise for device applications.A variety of atomically precise GNRs have recently been synthesized by on-surface and solution approaches.While on-surface GNRs can be conveniently visualized by scanning tunneling microscopy(STM),and their electronic structure can be probed by scanning tunneling spectroscopy(STS),such characterization remains a great challenge for the solution-synthesized GNRs.Here,we report solution synthesis and detailed STM/STS characterization of atomically precise GNRs with a meandering shape that are structurally related to chevron GNRs but have a reduced energy band gap.The ribbons were synthesized by Ni0-mediated Yamamoto polymerization of specially designed molecular precursors using triflates as the leaving groups and oxidative cyclodehydrogenation of the resulting polymers using Scholl reaction.The ribbons were deposited onto III-V semiconducting InAs(110)substrates by a dry contact transfer technique.High-resolution STM/STS characterization not only confirmed the GNR geometry,but also revealed details of electronic structure including energy states,electronic band gap,as well as the spatial distribution of the local density of states.The experimental STS band gap of GNRs is about 2 eV,which is very close to 2.35 eV predicted by the density functional theory simulations with GW correction,indicating a weak screening effect of InAs(110)substrate.Furthermore,several aspects of GNR-InAs(110)substrate interactions were also probed and analyzed,including GNR tunable transparency,alignment to the substrate,and manipulations of GNR position by the STM tip.The weak interaction between the GNRs and the InAs(110)surface makes InAs(110)an ideal substrate for investigating the intrinsic properties of GNRs.Because of the reduced energy band gap of these ribbons,the GNR thin films exhibit appreciably high electrical conductivity and on/off ratios of about 10 in field-effect transistor measurements,suggesting their promise for device applications. 展开更多
关键词 graphene nanoribbons bottom-up synthesis electronic structure dry contact transfer scanning tunneling microscopy scanning tunneling spectroscopy
原文传递
Scanning Tunneling Microscope Observations of Non-AB Stacking of Graphene on Ni Films 被引量:1
7
作者 Ruiqi Zhao Yanfeng Zhang +4 位作者 Teng Gao Yabo Gao Nan Liu Lei Fu Zhongfan Liu 《Nano Research》 SCIE EI CAS CSCD 2011年第7期712-721,共10页
Microscopic features of graphene segregated on Ni films prior to chemical transfer--including atomic structures of monolayers and bilayers, Moire patterns due to non-AB stacking, as well as wrinkles and ripples caused... Microscopic features of graphene segregated on Ni films prior to chemical transfer--including atomic structures of monolayers and bilayers, Moire patterns due to non-AB stacking, as well as wrinkles and ripples caused by strain effects-have been characterized in detail by high-resolution scanning tunneling microscopy (STM). We found that the stacking geometry of the bilayer graphene usually deviates from the traditional Bernal stacking (or so-called AB stacking), resulting in the formation of a variety of Moir6 patterns. The relative rotations inside the bilayer were then qualitatively deduced from the relationship between Moir6 patterns and carbon lattices. Moreover, we found that typical defects such as wrinkles and ripples tend to evolve around multi-step boundaries of Ni, thus reflecting strong perturbations from substrate corrugations. These investigations of the morphology and the mechanism of formation of wrinkles and ripples are fundamental topics in graphene research. This work is expected to contribute to the exploration of electronic and transport properties of wrinkles and ripples. 展开更多
关键词 graphene scanning tunneling microscopy (STM) SEGREGATION Moire pattern growth
原文传递
Effects of graphene defects on Co cluster nucleation and intercalation
8
作者 徐文焱 黄立 +4 位作者 阙炎德 林晓 王业亮 杜世萱 高鸿钧 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第8期568-571,共4页
Four kinds of defects are observed in graphene grown on Ru (0001) surfaces. After cobalt deposition at room tem- perature, the cobalt nanoclusters are preferentially located at the defect position. By annealing at 5... Four kinds of defects are observed in graphene grown on Ru (0001) surfaces. After cobalt deposition at room tem- perature, the cobalt nanoclusters are preferentially located at the defect position. By annealing at 530 ℃, cobalt atoms intercalate at the interface of Graphene/Ru (0001) through the defects. Further deposition and annealing increase the sizes of intercalated Co islands. This provides a method of controlling the arrangement of cobalt nanoclusters and also the den- sity and the sizes of intercalated cobalt islands, which would find potential applications in catalysis industries, magnetism storage, and magnetism control in future information technology. 展开更多
关键词 graphene DEFECTS COBALT INTERCALATION scanning tunneling microscopy
下载PDF
Triphenylene adsorption on Cu(111) and relevant graphene self-assembly
9
作者 Qiao-Yue Chen Jun-Jie Song +3 位作者 Liwei Jing Kaikai Huang Pimo He Hanjie Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第2期401-406,共6页
Investigations on adsorption behavior of triphenylene(TP) and subsequent graphene self-assembly on Cu(111) were carried out mainly by using scanning tunneling microscopy(STM).At monolayer coverage,TP molecules formed ... Investigations on adsorption behavior of triphenylene(TP) and subsequent graphene self-assembly on Cu(111) were carried out mainly by using scanning tunneling microscopy(STM).At monolayer coverage,TP molecules formed a longrange ordered adsorption structure on Cu(111) with an uniform orientation.Graphene self-assembly on the Cu(111) substrate with TP molecules as precursor was achieved by annealing the sample,and a large-scale graphene overlayer was successfully captured after the sample annealing up to 1000 K.Three different Moire patterns generated from relative rotational disorders between the graphene overlayer and the Cu(111) substrate were observed,one with 40 rotation between the graphene overlayer and the Cu(111) substrate with a periodicity of 2.93 nm,another with 70 rotation and 2.15 nm of the size of the Moire supercell,and the third with 100 rotation with a periodicity of 1.35 nm. 展开更多
关键词 TRIPHENYLENE graphene CU(111) scanning tunneling microscopy
下载PDF
The influence of annealing temperature on the morphology of graphene islands
10
作者 黄立 徐文焱 +7 位作者 阙炎德 潘毅 高敏 潘理达 郭海明 王业亮 杜世萱 高鸿钧 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第8期532-536,共5页
We report on temperature-programmed growth of graphene islands on Ru (0001) at annealing temperatures of 700 ℃, 800 ℃, and 900 ℃. The sizes of the islands each show a nonlinear increase with the annealing tempera... We report on temperature-programmed growth of graphene islands on Ru (0001) at annealing temperatures of 700 ℃, 800 ℃, and 900 ℃. The sizes of the islands each show a nonlinear increase with the annealing temperature. In 700 ℃ and 800 ℃annealings, the islands have nearly the same sizes and their ascending edges are embedded in the upper steps of the ruthenium substrate, which is in accordance with the etching growth mode. In 900 ℃ annealing, the islands are much larger and of lower quality, which represents the early stage of Smoluchowski ripening. A longer time annealing at 900 ℃ brings the islands to final equilibrium with an ordered moire pattern. Our work provides new details about graphene early growth stages that could facilitate the better control of such a growth to obtain graphene with ideal size and high quality. 展开更多
关键词 graphene islands ru (0001 annealing temperature scanning tunneling microscope
下载PDF
Intercalation of metals and silicon at the interface of epitaxial graphene and its substrates
11
作者 黄立 徐文焱 +8 位作者 阙炎德 毛金海 孟蕾 潘理达 李更 王业亮 杜世萱 刘云圻 高鸿钧 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第9期54-62,共9页
Intercalations of metals and silicon between epitaxial graphene and its substrates are reviewed. For metal intercala- tion, seven different metals have been successfully intercalated at the interface of graphene/Ru(O... Intercalations of metals and silicon between epitaxial graphene and its substrates are reviewed. For metal intercala- tion, seven different metals have been successfully intercalated at the interface of graphene/Ru(O001) and form different intercalated structures. Meanwhile, graphene maintains its original high quality after the intercalation and shows features of weakened interaction with the substrate. For silicon intercalation, two systems, graphene on Ru(O001) and on Ir(l I 1), have been investigated. In both cases, graphene preserves its high quality and regains its original superlative properties after the silicon intercalation. More importantly, we demonstrate that thicker silicon layers can be intercalated at the interface, which allows the atomic control of the distance between graphene and the metal substrates. These results show the great potential of the intercalation method as a non-damaging approach to decouple epitaxial graphene from its substrates and even form a dielectric layer for future electronic applications. 展开更多
关键词 graphene metal intercalation silicon intercalation scanning tunneling microscopy
下载PDF
Moir patterns and step edges on few-layer graphene grown on nickel films
12
作者 柯芬 尹秀丽 +6 位作者 佟鼐 林陈昉 刘楠 赵汝光 付磊 刘忠范 胡宗海 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第11期445-449,共5页
Few-layer graphene grown on Ni thin films has been studied by scanning tunneling microscopy. In most areas on the surfaces, moir6 patterns resulted from rotational stacking faults were observed. At a bias lower than 2... Few-layer graphene grown on Ni thin films has been studied by scanning tunneling microscopy. In most areas on the surfaces, moir6 patterns resulted from rotational stacking faults were observed. At a bias lower than 200 mV, only one sublattice shows up in regions without moir6 patterns while both sublattices are seen in regions with moir6 pattens. This phenomenon can be used to identify AB stacked regions. The scattering characteristics at various types of step edges are different from those of monolayer graphene edges, either armchair or zigzag. 展开更多
关键词 scanning tunneling microscopy few-layer graphene stacking order step edge
下载PDF
Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au(111)
13
作者 Huan Yang Yixuan Gao +7 位作者 Wenhui Niu Xiao Chang Li Huang Junzhi Liu Yiyong Mai Xinliang Feng Shixuan Du Hong-Jun Gao 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第7期484-488,共5页
The on-surface synthesis from predesigned organic precursors can yield graphene nanoribbons(GNRs)with atomically precise widths,edge terminations and dopants,which facilitate the tunning of their electronic structures... The on-surface synthesis from predesigned organic precursors can yield graphene nanoribbons(GNRs)with atomically precise widths,edge terminations and dopants,which facilitate the tunning of their electronic structures.Here,we report the synthesis of novel sulfur-doped cove-edged GNRs(S-CGNRs)on Au(111)from a specifically designed precursor containing thiophene rings.Scanning tunneling microscopy and non-contact atomic force microscopy measurements elucidate the formation of S-CGNRs through subsequent polymerization and cyclodehydrogenation,which further result in crosslinked branched structures.Scanning tunneling spectroscopy results reveal the conduction band minimum of the S-CGNR locates at 1.2 e V.First-principles calculations show that the S-CGNR possesses an energy bandgap of 1.17 e V,which is evidently smaller than that of an undoped cove-edged GNR(1.7 e V),suggesting effective tuning of the bandgap by introducing sulfur atoms.Further increasing the coverage of precursors close to a monolayer results in the formation of linear-shaped S-CGNRs.The fabrication of S-CGNRs provides one more candidate in the GNR toolbox and promotes the future applications of heteroatom-doped graphene nanostructures. 展开更多
关键词 on-surface synthesis sulfur-doped cove-edged graphene nanoribbons scanning tunneling microscopy non-contact atomic force microscopy
下载PDF
Er intercalation and its impact on transport properties of epitaxial graphene
14
作者 杨明敏 端勇 +3 位作者 孔雯霞 章晋哲 王剑心 蔡群 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期404-409,共6页
Intercalation of atomic species is a practicable method for epitaxial graphene to adjust the electronic band structure and to tune the coupling between graphene and Si C substrate. In this work, atomically flat epitax... Intercalation of atomic species is a practicable method for epitaxial graphene to adjust the electronic band structure and to tune the coupling between graphene and Si C substrate. In this work, atomically flat epitaxial graphene is prepared on 4H-SiC(0001) using the flash heating method in an ultrahigh vacuum system. Scanning tunneling microscopy, Raman spectroscopy and electrical transport measurements are utilized to investigate surface morphological structures and transport properties of pristine and Er-intercalated epitaxial graphene. It is found that Er atoms are intercalated underneath the graphene layer after annealing at 900℃, and the intercalation sites of Er atoms are located mainly at the bufferlayer/monolayer-graphene interface in monolayer domains. We also report the different behaviors of Er intercalation in monolayer and bilayer regions, and the experimental results show that the diffusion barrier for Er intercalated atoms in the buffer-layer/monolayer interface is at least 0.2 eV higher than that in the first/second graphene-layer interface. The appearance of Er atoms is found to have distinct impacts on the electronic transports of epitaxial graphene on SiC(0001). 展开更多
关键词 epitaxial graphene INTERCALATION scanning tunneling microscopy(STM) electrical transport
下载PDF
Electronic properties and interfacial coupling in Pb islands on single-crystalline graphene
15
作者 Jing-Peng Song Ang Li 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第3期517-520,共4页
Introducing metal thin films on two-dimensional(2D) material may present a system to possess exotic properties due to reduced dimensionality and interfacial effects. We deposit Pb islands on single-crystalline graphen... Introducing metal thin films on two-dimensional(2D) material may present a system to possess exotic properties due to reduced dimensionality and interfacial effects. We deposit Pb islands on single-crystalline graphene on a Ge(110)substrate and studied the nano-and atomic-scale structures and low-energy electronic excitations with scanning tunneling microscopy/spectroscopy(STM/STS). Robust quantum well states(QWSs) are observed in Pb(111) islands and their oscillation with film thickness reveals the isolation of free electrons in Pb from the graphene substrate. The spectroscopic characteristics of QWSs are consistent with the band structure of a free-standing Pb(111) film. The weak interface coupling is further evidenced by the absence of superconductivity in graphene in close proximity to the superconducting Pb islands.Accordingly, the Pb(111) islands on graphene/Ge(110) are free-standing in nature, showing very weak electronic coupling to the substrate. 展开更多
关键词 scanning tunneling microscopy graphene quantum well states superconducting proximity effect
下载PDF
Polarization Raman spectra of graphene nanoribbons
16
作者 许望伟 孙诗杰 +6 位作者 杨慕紫 郝振亮 高蕾 卢建臣 朱嘉森 陈建 蔡金明 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期568-573,共6页
The on-surface synthesis method allows the fabrication of atomically precise narrow graphene nanoribbons(GNRs),which bears great potential in electronic applications.Here,we synthesize armchair graphene nanoribbons(AG... The on-surface synthesis method allows the fabrication of atomically precise narrow graphene nanoribbons(GNRs),which bears great potential in electronic applications.Here,we synthesize armchair graphene nanoribbons(AGNRs)and chevron-type graphene nanoribbons(CGNRs)array on a vicinal Au(111112)surface using 10,10′-dibromo-9,9′-bianthracene(DBBA)and 6,12-dibromochrysene(DBCh)as precursors,respectively.This process creates spatially wellaligned GNRs,as characterized by scanning tunneling microscopy.AGNRs show strong Raman linear polarizability for application in optical modulation devices.Different from the distinct polarization of AGNRs,only weak polarization exists in CGNRs polarized Raman spectrum,which suggests that the presence of the zigzag boundary in the nanoribbon attenuates the polarization rate as an important factor affecting the polarization.We analyze the Raman activation mode of CGNRs using the peak polarization to expand the application of the polarization Raman spectroscopy in nanoarray analysis. 展开更多
关键词 graphene nanoribbons polarization Raman spectroscopy scanning tunneling microscopy
下载PDF
Gate-controlled localization to delocalization transition of flat band wavefunction in twisted monolayer–bilayer graphene
17
作者 李思宇 王政文 +5 位作者 薛禹承 曹路 Kenji Watanabe Takashi Taniguchi 高鸿钧 毛金海 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期102-105,共4页
Twisted graphene systems with flat bands have attracted much attention for they are excellent platforms to research novel quantum phases. Recently, transport measurements about twisted monolayer–bilayer graphene(t MB... Twisted graphene systems with flat bands have attracted much attention for they are excellent platforms to research novel quantum phases. Recently, transport measurements about twisted monolayer–bilayer graphene(t MBG) have shown the existence of correlated states and topological states in this system. However, the direct observations of the band structures and the corresponding spatial distributions are still not sufficient. Here we show that the distributions of flat bands in t MBG host two different modes by scanning tunneling microscopy and spectroscopy(STM/S). By tuning our t MBG device from the empty filling state to the full filling state through the back gate, we observe that the distributions of two flat bands develop from localized mode to delocalized mode. This gate-controlled flat band wavefunction polarization is unique to the t MBG system. Our work suggests that t MBG is promising to simulate both twisted bilayer graphene(TBG) and twisted double bilayer graphene(t DBG) and would be an ideal platform to explore novel moiré physics. 展开更多
关键词 graphene Van der Waals heterostructures scanning tunneling microscopy/spectroscopy
下载PDF
Uncovering the magnetic response of open-shell graphene nanostructures on metallic surfaces at different doping levels
18
作者 Zengfu Ou Jun Wang +6 位作者 Jihai Zhang Yukang Ding Shenwei Chen Wenya Zhai Jingcheng Li Dingyong Zhong Donghui Guo 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2024年第2期142-148,共7页
Open-shell graphene nanostructures(GNs)are promising candidates for future spintronics and quantum technologies.Recent progress based on on-surface synthetic approach has successfully created such GNs on metallic surf... Open-shell graphene nanostructures(GNs)are promising candidates for future spintronics and quantum technologies.Recent progress based on on-surface synthetic approach has successfully created such GNs on metallic surfaces.Meanwhile,the doping effect of metallic surfaces is inevitably present and can significantly tune their electronic and magnetic properties.Here,we investigate the zigzag end states of open-shell 7-armchair graphene nanoribbons(7-AGNRs)on Au(111),Au(100)and Ag(111)surfaces.Combined with the manipulation of a scanning tunneling microscope,we demonstrate that the end states can be tuned from empty states to singly occupied states and to doubly occupied states by substrate doping.Furthermore,the singly occupied states can be finely tuned,with the occupancy number of the states and related magnetic behaviors uncovered by experiments at different temperatures and magnetic fields.Our results provide a comprehensive study of the magnetic response of open-shell GNs on metallic surfaces at different doping levels. 展开更多
关键词 open-shell graphene nanostructures magnetic response metallic substrate doping Kondo resonance scanning tunneling microscopy/spectroscopy
原文传递
Local measurements of tunneling magneto-conductance oscillations in monolayer, Bernal-stacked bilayer, and ABC-stacked trilayer graphene
19
作者 Ya-Ning Ren Mo-Han Zhang +2 位作者 Chao Yan Yu Zhang Lin He 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2021年第8期72-77,共6页
Shubnikov-de Haas oscillations are the most well-known magneto-oscillations in transport measurements. They are caused by Landau quantization of two-dimensional(2D) electron systems in the presence of a magnetic field... Shubnikov-de Haas oscillations are the most well-known magneto-oscillations in transport measurements. They are caused by Landau quantization of two-dimensional(2D) electron systems in the presence of a magnetic field. Here we demonstrate that a scanning tunneling microscope(STM) can locally measure similar magneto-oscillations in 2D systems. In Landau level spectroscopy measurements with fine magnetic-field increments, we observed fixed-energy magnetic-field-dependent oscillations of the local density of states. From the measured tunneling magneto-conductance oscillations acquired by STM, energymomentum dispersions and Berry phases of a monolayer, Bernal-stacked bilayer, and ABC-stacked trilayer graphene were obtained. The reported method is applicable to a wide range of materials because it can obtain the magneto-oscillations of 2D systems larger than the magnetic length;importantly, it also requires no gate electrode. 展开更多
关键词 graphene magneto-conductance oscillations scanning tunneling microscopy energy-momentum dispersion Berry phase
原文传递
Influence of metal support in-plane symmetry on the corrugation of hexagonal boron nitride and graphene monolayers
20
作者 Antonio d. Martinez-Galera Jose M. Gomez-Rodriguez 《Nano Research》 SCIE EI CAS CSCD 2018年第9期4643-4653,共11页
Predicting the properties of two-dimensional (2D) materials as graphene and hexagonal boron nitride (h-BN) monolayers after their growth on any given substrate is a major challenge. While the influence of the elec... Predicting the properties of two-dimensional (2D) materials as graphene and hexagonal boron nitride (h-BN) monolayers after their growth on any given substrate is a major challenge. While the influence of the electron configuration of the atoms of the underlying surface is well-understood, the effect of substrate geometry still remains unclear. The structural properties of h-BN monolayers grown on a rectangularly packed Rh(110) surface were characterized in situ by ultrahigh vacuum scanning tunneling microscopy and were compared to those that this material exhibits when grown on substrates showing different crystallographic orientations. Although the h-BN monolayer grown on Rh(110) was dominated by a unique quasiunidimensional moir6 pattern, suggesting considerable interface interaction, the moir6 corrugation was unexpectedly smaller than those reported for strongly interacting interfaces with hexagonal-terminated substrates, owing to differences in the possible binding landscapes at interfaces with differently oriented substrates. Moreover, a rule was derived for predicting how interface corrugation and the existence and extent of subregions within moir6 supercells containing favorable sites for orbital mixing between h-BN monolayers and their supports depend on substrate symmetry. These general symmetry considerations can be applied to numerous 2D materials, including graphene, thereby enabling the prediction of how substrate choice determines the properties of these materials. Furthermore, they could also provide new routes for tuning 2D material properties and for developing nanotemplates showing different geometries for Krowing adsorbate superlattices. 展开更多
关键词 hexagonal boron nitride graphene two-dimensional materials scanning tunneling microscopy moire superstructures nanotemplates
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部