期刊文献+
共找到120篇文章
< 1 2 6 >
每页显示 20 50 100
Investigation of Projectile Impact Behaviors of Graphene Aerogel Using Molecular Dynamics Simulations
1
作者 Xinyu Zhang Wenjie Xia +2 位作者 Yang Wang Liang Wang Xiaofeng Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3047-3061,共15页
Graphene aerogel(GA),as a novel solid material,has shown great potential in engineering applications due to its unique mechanical properties.In this study,the mechanical performance of GA under high-velocity projectil... Graphene aerogel(GA),as a novel solid material,has shown great potential in engineering applications due to its unique mechanical properties.In this study,the mechanical performance of GA under high-velocity projectile impacts is thoroughly investigated using full-atomic molecular dynamics(MD)simulations.The study results show that the porous structure and density are key factors determining the mechanical response of GA under impact loading.Specifically,the impact-induced penetration of the projectile leads to the collapse of the pore structure,causing stretching and subsequent rupture of covalent bonds in graphene sheets.Moreover,the effects of temperature on the mechanical performance of GA have been proven to be minimal,thereby highlighting the mechanical stability of GA over a wide range of temperatures.Finally,the energy absorption density(EAD)and energy absorption efficiency(EAE)metrics are adopted to assess the energy absorption capacity of GA during projectile penetration.The research findings of this work demonstrate the significant potential of GA for energy absorption applications. 展开更多
关键词 graphene aerogel molecular dynamics simulation impact response energy absorption
下载PDF
Molecular dynamics simulation of ion transportation through graphene nanochannels 被引量:1
2
作者 陈辰 陈云飞 +4 位作者 沙菁■ 伍根生 马建 李堃 纪安平 《Journal of Southeast University(English Edition)》 EI CAS 2017年第2期171-176,共6页
The model of ion transportation through graphene nanochannels is established by the molecular dynamics simulation method. Statistics of the electric potential and charge distribution are made, respectively, on both si... The model of ion transportation through graphene nanochannels is established by the molecular dynamics simulation method. Statistics of the electric potential and charge distribution are made, respectively, on both sides of graphene nanopore with various diameters. Then, their changing relationship with respect to the nanopore diameter is determined. When applying a uniform electric field, polar water molecules are rearranged so that the corresponding relationship between the polarized degree of these molecules and the nanopore diameter can be created. Based on the theoretical model of ion transportation through nanochannels,the changing relationship between the concentration of anions/cations in nanochannels and bulk solution concentration is quantitatively analyzed. The results show that the increase of potential drop and charge accumulation, as well as a more obvious water polarization, will occur with the decrease of nanopore diameter. In addition, hydrogen ion concentration has a large proportion in nanochannels with a sodium chloride(NaCl) solution at a relative low concentration. As the NaCl concentration increases, the concentration appreciation of sodium ions tends to be far greater than the concentration drop of chloride ions. Therefore, sodium ion concentration makes more contribution to ionic conductance. 展开更多
关键词 molecular dynamics simulation ion transportation graphene nanochannels ionic conductance
下载PDF
Thermal transport properties of defective graphene:A molecular dynamics investigation 被引量:1
3
作者 杨宇霖 卢宇 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第10期405-410,共6页
In this work the thermal transport properties of graphene nanoribbons with randomly distributed vacancy defects are investigated by the reverse non-equilibrium molecular dynamics method. We find that the thermal condu... In this work the thermal transport properties of graphene nanoribbons with randomly distributed vacancy defects are investigated by the reverse non-equilibrium molecular dynamics method. We find that the thermal conductivity of the graphene nanoribbons decreases as the defect coverage increases and is saturated in a high defect ratio range. Further analysis reveals a strong mismatch in the phonon spectrum between the unsaturated carbon atoms in 2-fold coordination around the defects and the saturated carbon atoms in 3-fold coordination, which induces high interfacial thermal resistance in defective graphene and suppresses the thermal conductivity. The defects induce a complicated bonding transform from sp2 to hybrid sp--sp2 network and trigger vibration mode density redistribution, by which the phonon spectrum conversion and strong phonon scattering at defect sites are explained. These results shed new light on the understanding of the thermal transport behavior of graphene-based nanomaterials with new structural configurations and pave the way for future designs of thermal management phononic devices. 展开更多
关键词 thermal conductivity vacancy defect graphene molecular dynamics simulation
下载PDF
Crystallization of polymer chains induced by graphene: Molecular dynamics study
4
作者 杨俊升 黄多辉 +3 位作者 曹启龙 李强 王立志 王藩侯 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第9期595-599,共5页
The present work is devoted to a study of the molecular mechanisms of the crystallization of polymer chains induced by graphene by using molecular dynamics (MD) simulations. From the atomic configuration translation... The present work is devoted to a study of the molecular mechanisms of the crystallization of polymer chains induced by graphene by using molecular dynamics (MD) simulations. From the atomic configuration translation, the number distri- bution of the atoms, and the order parameter S, the crystallization process can be summarized in two steps, the adsorption and the orientation. By analyzing the diffusion properties of the polymer chains, we find that a graphene substrate has a great adsorption for the polymer molecules and the polymer molecules need more time to adjust their configurations. Therefore, the adsorption step and the orientation step are highly cooperative. 展开更多
关键词 polymer crystallization molecular dynamics simulations graphene ADSORPTION
下载PDF
Thermal conductivity of carbon nanoring linked graphene sheets:A molecular dynamics investigation
5
作者 石刚 张鉴炜 +2 位作者 贺雍律 鞠苏 江大志 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第10期378-383,共6页
Improving the thermal conduction across graphene sheets is of great importance for their applications in thermal management. In this paper, thermal transport across a hybrid structure lbrmed by two graphene nanoribbon... Improving the thermal conduction across graphene sheets is of great importance for their applications in thermal management. In this paper, thermal transport across a hybrid structure lbrmed by two graphene nanoribbons and carbon nanorings (CNRs) was investigated by molecular dynamics simulations. The effects of linker diameter, number, and height on thermal conductivity of the CNRs-graphene hybrid structures were studied respectively, and the CNRs were found effective in transmitting the phonon modes of GNRs. The hybrid structure with 2 linkers showed the highest thermal conductivity of 68.8 W·m^-1·K^-1. Our work presents important insight into fundamental principles governing the thermal conduction across CNR junctions and provides useful guideline for designing CNR-graphene structure with superior thermal conductivity. 展开更多
关键词 carbon nanorins-graphene hybrid structures thermal conductivity molecular dynamics simulation
下载PDF
Thermal wave propagation in graphene studied by molecular dynamics simulations 被引量:6
6
作者 Wen-Jun Yao Bing-Yang Cao 《Chinese Science Bulletin》 SCIE EI CAS 2014年第27期3495-3503,共9页
The transient heat conduction in both armchair and zigzag-edged graphene ribbons pulsed by local heating with a duration of 1 ps was studied using nonequilibrium molecular dynamics simulations. The results show that t... The transient heat conduction in both armchair and zigzag-edged graphene ribbons pulsed by local heating with a duration of 1 ps was studied using nonequilibrium molecular dynamics simulations. The results show that the heat pulse excites two waves which indicates non-Fourier heat conduction. One of the two waves is a sound wave(first sound), which has macroscopic momentum and propagates at the speed of sound. The other is a thermal wave(second sound), whose propagation speed is 1=ffiffi3pof the sound velocity. The sound wave excited by the heat pulse is a longitudinal wave, whose energy is only transported in the longitudinal direction. The thermal wave excited by the heat pulse is generated by transverse lattice vibrations, with the energy only having the transverse component. The observed anisotropy of the transient heat conduction suggests that the system is in a non-equilibrium state during propagation of the heat pulse. Further statistical analyses show that the displacement of the heat pulse energy is related to the time as hr2 i / t1:80, which implies that heat transport is ballistic-diffusive transport in graphene. The higher proportion of the ballistic transport will lead to stronger heat waves. At the crest of the thermal wave, energy is transported ballistically, while in the diffusive region and during attenuation of the thermal wave,the energy is transported diffusively. 展开更多
关键词 分子动力学模拟 波传播 石墨 脉冲持续时间 非傅立叶热传导 脉冲能量 瞬态热传导 非平衡状态
原文传递
Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
7
作者 吴梦娇 马慧姝 +2 位作者 方海平 阳丽 雷晓玲 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第1期598-605,共8页
The adsorption dynamics of double-stranded DNA(dsDNA)molecules on a graphene oxide(GO)surface are important for applications of DNA/GO functional structures in biosensors,biomedicine and materials science.In this work... The adsorption dynamics of double-stranded DNA(dsDNA)molecules on a graphene oxide(GO)surface are important for applications of DNA/GO functional structures in biosensors,biomedicine and materials science.In this work,molecular dynamics simulations were used to examine the adsorption of different length dsDNA molecules(from 4 bp to24 bp)on the GO surface.The dsDNA molecules could be adsorbed on the GO surface through the terminal bases and stand on the GO surface.For short dsDNA(4 bp)molecules,the double-helix structure was partially or totally broken and the adsorption dynamics was affected by the structural fluctuation of short dsDNA and the distribution of the oxidized groups on the GO surface.For long dsDNA molecules(from 8 bp to 24 bp)adsorption is stable.By nonlinear fitting of the contact angle between the axis of the dsDNA molecule and the GO surface,we found that a dsDNA molecule adsorbed on a GO surface has the chance of orienting parallel to the GO surface if the length of the dsDNA molecule is longer than 54 bp.We attributed this behavior to the flexibility of dsDNA molecules.With increasing length,the flexibility of dsDNA molecules also increases,and this increasing flexibility gives an adsorbed dsDNA molecule more chance of reaching the GO surface with the free terminal.This work provides a whole picture of adsorption of dsDNA molecules on the GO surface and should be of benefit for the design of DNA/GO based biosensors. 展开更多
关键词 double-strand DNA(dsDNA) molecular dynamics simulation adsorption dynamic graphene oxide
下载PDF
Effect of interlayer bonded bilayer graphene on friction
8
作者 李耀隆 田振国 +1 位作者 尹海峰 张任良 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期389-395,共7页
We study the friction properties of interlayer bonded bilayer graphene by simulating the movement of a slider on the surface of bilayer graphene using molecular dynamics.The results show that the presence of the inter... We study the friction properties of interlayer bonded bilayer graphene by simulating the movement of a slider on the surface of bilayer graphene using molecular dynamics.The results show that the presence of the interlayer covalent bonds due to the local sp^(3) hybridization of carbon atoms in the bilayer graphene seriously reduces the frictional coefficient of the bilayer graphene surface to 30%,depending on the coverage of interlayer sp^(3) bonds and normal loads.For a certain coverage of interlayer sp3bonds,when the normal load of the slider reaches a certain value,the surface of this interlayer bonded bilayer graphene will lose the friction reduction effect on the slider.Our findings provide guidance for the regulation and manipulation of the frictional properties of bilayer graphene surfaces through interlayer covalent bonds,which may be useful for applications of friction related graphene based nanodevices. 展开更多
关键词 nanoscale friction molecular dynamic simulation bilayer graphene interlayer covalent bond
下载PDF
六边形锯齿型Graphene团簇的熔化性质 被引量:1
9
作者 张凯旺 《湘潭大学自然科学学报》 CAS CSCD 北大核心 2008年第1期43-46,共4页
采用分子动力学模拟方法研究了六边形锯齿型Graphene团簇的熔化性质.依据Lindemann指数曲线的变化趋势得出六边形锯齿型Graphene团簇的熔化温度为5000K~5500K左右,且小尺寸的Graphene团簇熔化温度比大尺寸的Graphene团簇熔化温度高.Gra... 采用分子动力学模拟方法研究了六边形锯齿型Graphene团簇的熔化性质.依据Lindemann指数曲线的变化趋势得出六边形锯齿型Graphene团簇的熔化温度为5000K~5500K左右,且小尺寸的Graphene团簇熔化温度比大尺寸的Graphene团簇熔化温度高.Graphene团簇通常是不平整的,随着模拟温度的增加,Graphene团簇在边缘先出现C键的断裂并从边缘处开始熔化. 展开更多
关键词 graphene 团簇 熔化 分子动力学模拟
下载PDF
Mechanical Properties of Ni-Coated Single Graphene Sheet and Their Embedded Aluminum Matrix Composites 被引量:9
10
作者 宋海洋 查新未 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第7期143-147,共5页
The effects of Ni coating on the mechanical behaviors of single graphene sheet and their embedded Al matrix composites under axial tension are investigated using molecular dynamics (MD) simulation method. The result... The effects of Ni coating on the mechanical behaviors of single graphene sheet and their embedded Al matrix composites under axial tension are investigated using molecular dynamics (MD) simulation method. The results show that the Young's moduli and tensile strength of graphene obviously decrease after Ni coating. The results also show that the mechanical properties of Al matrix can be obviously increased by embedding a single graphene sheet. From the simulation, we also find that the Young's modulus and tensile strength of the Ni-coated graphene/Al composite is obviously larger than those of the uncoated graphene/Al composite. The increased magnitude of the Young's modulus and tensile strength of graphene/Al composite are 52.27% and 32.32% at 0.01 K, respectively, due to Ni coating. By exploring the effects of temperature on the mechanical properties of single graphene sheet and their embedded Al matrix composites, it is found that the higher temperature leads to the lower critical strain and tensile strength. 展开更多
关键词 NANOCOMPOSITES mechanical properties single graphene sheet molecular dynamics simulation
下载PDF
Folding of multi-layer graphene sheets induced by van der Waals interaction 被引量:1
11
作者 Xian-Hong Meng Ming Li +1 位作者 Zhan Kang Jian-Liang Xiao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第3期410-417,共8页
Graphene sheets are extremely flexible, and thus small forces, such as van der Waals interaction, can induce significant out-of-plane deformation, such as folding. Folded graphene sheets show racket shaped edges, whic... Graphene sheets are extremely flexible, and thus small forces, such as van der Waals interaction, can induce significant out-of-plane deformation, such as folding. Folded graphene sheets show racket shaped edges, which can significantly affect the electrical properties of graphene. In this paper, we present combined theoretical and computational studies to reveal the folding behavior of multi-layer graphene sheets. A nonlinear theoretical model is established to determine the critical length of multilayer graphene sheets for metastable and stable folding, and to accurately predict the shapes of folded edges. These results all show good agree- ment with those obtained by molecular dynamics simulations. 展开更多
关键词 graphene FOLDING STABILITY Theoreticalmodel molecular dynamics simulation
下载PDF
Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons 被引量:1
12
作者 Caiyun Wang Shuang Lu +1 位作者 Xiaodong Yu Haipeng Li 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第1期522-526,共5页
We calculated the room-temperature phonon thermal conductivity and phonon spectrum of alkyl group-functionalized zigzag graphene nanoribbons(ZGNRs) with molecular dynamics simulations. The increase in both chain lengt... We calculated the room-temperature phonon thermal conductivity and phonon spectrum of alkyl group-functionalized zigzag graphene nanoribbons(ZGNRs) with molecular dynamics simulations. The increase in both chain length and concentration of alkyl groups caused remarkable reduction of phonon thermal conductivity in functionalized ZGNRs. Phonon spectra analysis showed that functionalization of ZGNR with alkyl functional groups induced phonon–structural defect scattering, thus leading to the reduction of phonon thermal conductivity of ZGNR. Our study showed that surface functionalization is an effective routine to tune the phonon thermal conductivity of GNRs, which is useful in graphene thermal-related applications. 展开更多
关键词 graphene nanoribbons(GNRs) thermal CONDUCTIVITY PHONON spectrum surface FUNCTIONALIZATION molecular dynamics simulations
下载PDF
Effects of vacancy defect on the tensile behavior of graphene 被引量:1
13
作者 Xiaoyu Sun Zuoguang Fu +1 位作者 Mingtan Xia Yuanjie Xu 《Theoretical & Applied Mechanics Letters》 CAS 2014年第5期13-17,共5页
Graphene is the strongest material but its performance is significantly weakened by vacancy defects. We use molecular dynamics simulations to inves- tigate the tensile behavior of a graphene which contains a single va... Graphene is the strongest material but its performance is significantly weakened by vacancy defects. We use molecular dynamics simulations to inves- tigate the tensile behavior of a graphene which contains a single vacancy defect. Our results suggest that because of the single vacancy, the fracture strength of graphene losses about 17.7%. The stress concentration around the vacancy defect leads to the destruction of nearby six-member rings structure, which forms the initial crack. The propagation direction of this crack in defective graphene is at an angle of 60° to the tensile direction initially, but then becomes perpendicular to the tensile direction. 展开更多
关键词 graphene vacancy defect FRACTURE molecular dynamics simulation
下载PDF
Molecular Dynamics Simulations of Thermal Properties of Polymer Composites Enhanced by Cross-Linked Graphene Sheets 被引量:1
14
作者 Yunlong Li Shijie Wang Quan Wang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2018年第6期673-682,共10页
Molecular models of pristine, functionalized and cross-linked graphene sheet/polymer composites are developed. Temperature cooling processes are conducted to examine the improve-ment of glass transition temperature of... Molecular models of pristine, functionalized and cross-linked graphene sheet/polymer composites are developed. Temperature cooling processes are conducted to examine the improve-ment of glass transition temperature of cross-linked graphene sheet/polymer composites using molecular dynamics simulations. The results show that increases of about 12.2% and 8.9% in the glass transition temperature of cross-linked graphene sheet/polymer composites are obtained, respectively, than those of the pristine and functionalized graphene sheet/polymer composites. In order to reveal the enhanced thermal properties from atomic views, the interfacial interaction energy and radius distribution function between the graphene sheets and the polymer matrix, the mean square displacement variations and the free volume of polymer composites are examined and discussed. 展开更多
关键词 molecular dynamics simulation Polymer composites graphene SHEET Glass tran-sition temperature
原文传递
Graphene条带的热稳定性研究 被引量:2
15
作者 李爱华 《湖南科技学院学报》 2010年第4期38-41,共4页
采用分子动力学模拟方法研究了锯齿型和扶手型graphene条带的熔化性质,依据Lindemann指数曲线的变化趋势得出锯齿型和扶手型graphene条带的整体熔化温度分别为5000K~5500K和4500K~5000K,锯齿型graphene条带的热稳定性比扶手型graphen... 采用分子动力学模拟方法研究了锯齿型和扶手型graphene条带的熔化性质,依据Lindemann指数曲线的变化趋势得出锯齿型和扶手型graphene条带的整体熔化温度分别为5000K~5500K和4500K~5000K,锯齿型graphene条带的热稳定性比扶手型graphene条带相对要好些。Graphene条带通常是不平整的,随着模拟温度的增加,graphene条带在边缘先出现C键的断裂并从边缘处开始熔化。 展开更多
关键词 graphene条带 Lindemann指数 熔化 分子动力学模拟
下载PDF
Effect of Na and Cl ions on water evaporation on graphene oxide
16
作者 Xi Nan Yu-Wei Guo Rong-Zheng Wan 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第8期42-49,共8页
Using molecular dynamics simulations, we investigate the influence of Na and Cl ions on the evaporation of nanoscale water on graphene oxide surfaces. As the concentration of NaCl increases from 0 to 1.5 M, the evapor... Using molecular dynamics simulations, we investigate the influence of Na and Cl ions on the evaporation of nanoscale water on graphene oxide surfaces. As the concentration of NaCl increases from 0 to 1.5 M, the evaporation rate shows a higher decrease on patterned graphene oxide than that on homogeneous graphene oxide.The analysis shows an obvious decrease in the evaporation rate from unoxidized regions, which can be attributed to the increased amount of Na^+ ions near the contact lines.The proximity of Na^+ significantly extends the H-bond lifetime of the outermost water molecules, which reduces the number of water molecules diffusing from the oxidized to unoxidized regions. Moreover, the effect of the ions on water evaporation is less significant when the oxidation degree varies in a certain range. Our findings advance the understanding of the evaporation process in the presence of ions and highlight the potential application of graphene oxide in achieving controllable evaporation of liquids. 展开更多
关键词 EVAPORATION IONS graphene OXIDE molecular dynamics simulation
下载PDF
A generalized formula for two-dimensional diffusion of CO in graphene nanoslits with different Pt loadings
17
作者 Chenglong Qiu Yinbin Wang +5 位作者 Yuejin Li Xiang Sun Guilin Zhuang Zihao Yao Shengwei Deng Jianguo Wang 《Green Energy & Environment》 SCIE CSCD 2020年第3期322-332,共11页
Catalytic performance of supported metal catalysts not only depends on the reactivity of metal,but also the adsorption and diffusion properties of gas molecules which are usually affected by many factors,such as tempe... Catalytic performance of supported metal catalysts not only depends on the reactivity of metal,but also the adsorption and diffusion properties of gas molecules which are usually affected by many factors,such as temperature,pressure,properties of metal clusters and substrates,etc.To explore the impact of each of these macroscopic factors,we simulated the movement of CO molecules confined in graphene nanoslits with or without supported Pt nanoparticles.The results of molecular dynamics simulations show that the diffusion of gas molecules is accelerated with high temperature,low pressure or low surface-atom number of supported metals.Notably,the supported metal nanoparticles greatly affect the gas diffusion due to the adsorption of gas molecules.Furthermore,to bridge a quantitative relationship between microscopic simulation and macroscopic properties,a generalized formula is derived from the simulation data to calculate the diffusion coefficient.This work helps to advise the diffusion modulation of gas molecules via structural design of catalysts and regulation of reaction conditions. 展开更多
关键词 Gas diffusion graphene nanoslits Supported Pt nanoparticles molecular dynamics simulation
下载PDF
Mechanical Properties of Graphene with Vacancy Defects
18
作者 Yulin Yang 《材料科学研究(中英文版)》 2013年第4期50-57,共8页
关键词 空位缺陷 石墨 力学性能 分子动力学模拟 机械强度 机械性能 原子级结构 剪切变形
下载PDF
Predicting Glass Transition Temperature of Polyethylene/Graphene Nanocomposites by Molecular Dynamic Simulation 被引量:4
19
作者 SHENG Yan-zhen YANG Hua +1 位作者 LI Jun-yin SUN Miao 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2013年第4期788-792,共5页
The glass transition temperature of polyethylene/graphene nanocomposites was investigated by molecular dynamic simulation. The specific volumes of three systems(polycthylene, polyethylene with a small graphene sheet ... The glass transition temperature of polyethylene/graphene nanocomposites was investigated by molecular dynamic simulation. The specific volumes of three systems(polycthylene, polyethylene with a small graphene sheet and two small graphene sheets) were examined as a function of temperature. We found that the glass transition temperature decreases with increasing graphene. Then the van der Waals energy changes obviously with increasing graphene and the torsion energy also plays an important role in the glass transition of polymer. The radial distribution functions of the inter-molecular carbon atoms suggest the interaction between PE and graphene weakens with increasing graphene. These indicate that graphene can prompt the motion of chain segments of polymer and decrease the glass transition temperature (Tg) of polymer. 展开更多
关键词 molecular dynamic simulation Glass transition POLYETHYLENE graphene
原文传递
Folded graphene reinforced nanocomposites with superior strength and toughness:A molecular dynamics study 被引量:2
20
作者 Shaoyu Zhao Yingyan Zhang +1 位作者 Jie Yang Sritawat Kitipornchai 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第25期196-204,共9页
Toughness and strength are important material parameters in practical structural applications.However,it remains a great challenge to achieve high toughness and high strength simultaneously for most materials.Here,we ... Toughness and strength are important material parameters in practical structural applications.However,it remains a great challenge to achieve high toughness and high strength simultaneously for most materials.Here,we report a folded graphene(FG)reinforced copper(Cu)nanocomposite that overcomes the long-standing conflicts between toughness and strength.Intensive molecular dynamics simulations show that the 10%pre-strain-induced four-wave-patterned FG(1.09 wt%)reinforced Cu nanocomposite exhibits simultaneous enhancement in toughness(~13.59 J/m^(2)),ductility(~32.38%),and strength(~9.52 GPa),corresponding to 38.53%,58.88%,and 2.26%increase,respectively when compared with its counterpart reinforced by pristine graphene(PG).More importantly,the mechanical properties of FG/Cu nanocomposites can be effectively tuned by changing the pre-compressive strain,wave number,and peak number of FG.The toughening and strengthening mechanisms are applicable to other metal materials reinforced by other 2 D nanomaterials,opening up a new avenue for developing tough and strong metal nanocomposites. 展开更多
关键词 TOUGHNESS Tensile ductility Folded graphene Cu nanocomposite molecular dynamics simulation
原文传递
上一页 1 2 6 下一页 到第
使用帮助 返回顶部