In this study, graphene sheets are prepared under a hydrogen atmosphere without a catalyst, and the growth mechanism of graphene by direct current arc discharge is investigated experimentally and numerically. The size...In this study, graphene sheets are prepared under a hydrogen atmosphere without a catalyst, and the growth mechanism of graphene by direct current arc discharge is investigated experimentally and numerically. The size and layer numbers of graphene sheets increase with the arc current.Distributions of temperature, velocity, and mass fraction of carbon are obtained through numerical simulations. A high current corresponds to a high saturation temperature, evaporation rate, and mass density of carbon clusters. When the carbon vapor is saturated, the saturation temperatures are 3274.9, 3313.9, and 3363.6 K, and the mass densities are 6.4×1022,8.42×1022, and 1.23×1023 m-3 under currents of 150, 200, and 250 A, respectively. A hydrogen-induced marginal growth model is used to explain the growth mechanism. Under a high current, the condensation coefficient and van der Waals force increase owing to the higher saturation temperature and mass density of carbon clusters, which is consistent with experimental results.展开更多
High-quality graphene is prepared by arc discharge with low cost under hydrogen atmosphere. However, the growth mechanism of graphene synthesis by arc discharge remains unclear. In this paper, the hydrogen-induced mar...High-quality graphene is prepared by arc discharge with low cost under hydrogen atmosphere. However, the growth mechanism of graphene synthesis by arc discharge remains unclear. In this paper, the hydrogen-induced marginal growth(HIMG) model is deduced to study the growth mechanism of graphene by combining experiment with numerical simulation results. First, the characteristics of thick edges and thin middle and containing hydrogen are verified by transmission electron microscopy and Raman spectroscopy, respectively. In addition, numerical simulation provides the chemical species and temperature range of graphene growth. Second, the marginal growth pattern of hydrogen transfer and carbon addition is introduced because the C–H and C–C reduce configuration energy and island energy, respectively. Meanwhile, the stacking growth at the margin of the graphene island leads to the longitudinal growth of graphene because of the Van der Waals force and the effect of self-assembly,increasing the number of graphene layers. Finally, graphene sheets with a small amount of hydrogen are deposited on the inner wall after annealing. The investigation of the growth mechanism of graphene under hydrogen atmosphere lays a foundation for the large-scale preparation of graphene by arc discharge.展开更多
基金supported by National Natural Science Foundation of China (No. 11765010)the National Key Research and Development Program of China (No. 2019YFC1907900)+2 种基金the Applied Basic Research Programs of Yunnan Provincial Science and Technology Department (No. 202001AW070004)the Freely Exploring Fund for Academicians in Yunnan Province (No. 2018HA006)the Key Laboratory of Resource Chemistry, Ministry of Education (No. KLRCME2001)
文摘In this study, graphene sheets are prepared under a hydrogen atmosphere without a catalyst, and the growth mechanism of graphene by direct current arc discharge is investigated experimentally and numerically. The size and layer numbers of graphene sheets increase with the arc current.Distributions of temperature, velocity, and mass fraction of carbon are obtained through numerical simulations. A high current corresponds to a high saturation temperature, evaporation rate, and mass density of carbon clusters. When the carbon vapor is saturated, the saturation temperatures are 3274.9, 3313.9, and 3363.6 K, and the mass densities are 6.4×1022,8.42×1022, and 1.23×1023 m-3 under currents of 150, 200, and 250 A, respectively. A hydrogen-induced marginal growth model is used to explain the growth mechanism. Under a high current, the condensation coefficient and van der Waals force increase owing to the higher saturation temperature and mass density of carbon clusters, which is consistent with experimental results.
基金supported by the National Natural Science Foundation of China (Grant Nos.11765010 and 51704136)the National Key Research and Development Program of China (Grant No.2019YFC1907900)+1 种基金the Freely Exploring Fund for Academicians in Yunnan Province (Grant No.2018HA006)the Science Research Fund of Education Department in Yunnan Province (Grant No.2019Y0031)。
文摘High-quality graphene is prepared by arc discharge with low cost under hydrogen atmosphere. However, the growth mechanism of graphene synthesis by arc discharge remains unclear. In this paper, the hydrogen-induced marginal growth(HIMG) model is deduced to study the growth mechanism of graphene by combining experiment with numerical simulation results. First, the characteristics of thick edges and thin middle and containing hydrogen are verified by transmission electron microscopy and Raman spectroscopy, respectively. In addition, numerical simulation provides the chemical species and temperature range of graphene growth. Second, the marginal growth pattern of hydrogen transfer and carbon addition is introduced because the C–H and C–C reduce configuration energy and island energy, respectively. Meanwhile, the stacking growth at the margin of the graphene island leads to the longitudinal growth of graphene because of the Van der Waals force and the effect of self-assembly,increasing the number of graphene layers. Finally, graphene sheets with a small amount of hydrogen are deposited on the inner wall after annealing. The investigation of the growth mechanism of graphene under hydrogen atmosphere lays a foundation for the large-scale preparation of graphene by arc discharge.