The corrosion inhibition of metallic substrates is a prime issue for many potential applications where corrosion plays a crucial role. The development of carbon based on functionalized coatings could increase the life...The corrosion inhibition of metallic substrates is a prime issue for many potential applications where corrosion plays a crucial role. The development of carbon based on functionalized coatings could increase the lifetime of metallic substrates by inhibiting the corrosion process. Present work is an effort to develop a corrosion inhibiting composite coating of graphene oxide and polypyrrole for AISI (American Iron and Steel Institute) type 304 stainless steel substrates. The electrochemical galvanostatic deposition process was applied for coating development. The coating morphology and ability to cover the substrate surface was analyzed with a high-resolution scanning electron microscope. The coating's structural and electronic properties were analyzed with Raman spectroscopy. The investigation of corrosion inhibition involved open circuit potential, Tafel, and voltammetry analysis. The standard salt test ASTM (American Society for Testing and Materials) G48A for stainless steel substrate has also been studied. Significant enhancement of corrosion potential as well as pitting potential for the composite coated substrates has been noted. Furthermore, corrosion and breakdown potential increased upon changing the material from graphene oxide to its composite coating. During the salt test analysis, the durability of the composite coating was noted up to 72 h, which is the standard time scale. Based on experimental analysis, this composite material can be used as an effective carbon based on functionalized corrosion inhibitor for stainless steel substrates to increase their lifetime.展开更多
Graphene oxide(GO)has recently attracted substantial interest as a possible reinforcing agent for next generation rubber composite materials.In this research,GO was incorporated in natural rubber(NR)composites through...Graphene oxide(GO)has recently attracted substantial interest as a possible reinforcing agent for next generation rubber composite materials.In this research,GO was incorporated in natural rubber(NR)composites through latex co-coagulation technique.The microstructures of GO/NR composites were characterized through a combination of transmission electron microscope,scanning electron microscope,X-ray diffraction,Fourier transform infrared spectroscopy,and Differential scanning calorimeter.The results showed that highly exfoliated GO sheets were finely dispersed into NR rubber matrix with strong interface interaction between GO and NR.The mechanical properties of the GO/NR composites were further evaluated.The results showed that the tensile strength,tear strength and modulus can be significantly improved at a content of less than 2 phr.Especially,GO exhibited specific reinforce mechanism in NR due to the stress-induced crystallization effects of NR.The stress transfer from the NR to the GO sheets and the hindrance of GO sheets to the stress-induced crystallization of NR were further displayed in stress-strain behavior of GO/NR composites.These enhanced properties were attributed to the high surface area of GO sheets and highly exfoliated microstructures of GO sheets in NR.展开更多
The rising production of produced water from oilfields had been proven to bring detrimental environmental effects.In this study,an efficient,recyclable,and environmental-friendly reduced graphene oxide immobilizedκ-C...The rising production of produced water from oilfields had been proven to bring detrimental environmental effects.In this study,an efficient,recyclable,and environmental-friendly reduced graphene oxide immobilizedκ-Carrageenan hydrogel composite(κCaGO)was fabricated as an alternative sorbent for crude oil-in-water demulsification.Polyethyleneimine(PEI)was employed to form a stable hydrogel composite.The conditions for the immobilization of graphene oxide(GO)on PEI-modifiedκ-Carrageenan(κC)beads were optimized appropriately.An immobilization yield of 77%was attained at 2%PEI,2 h immobilization activation time,and pH 6.5.Moreover,the synthesizedκCaGO is capable of demulsification with an average demulsification efficiency of 70%.It was found that the demulsification efficiency increases with salinity andκCaGO dosage,and it deteriorates under alkaline condition.These phenomena can be attributed to the interfacial interactions betweenκCaGO and the emulsion.Furthermore,theκCaGO can be recycled to use for up to six cycles without significant leaching and degradation.As such,the synthesizedκCaGO could be further developed as a potential sorbent substitute for the separation of crude oil from produced water.展开更多
The main bottleneck against industrial utilization of sodium ion batteries(SIBs)is the lack of high-capacity electrodes to rival those of the benchmark lithium ion batteries(LIBs).Here in this work,we have developed a...The main bottleneck against industrial utilization of sodium ion batteries(SIBs)is the lack of high-capacity electrodes to rival those of the benchmark lithium ion batteries(LIBs).Here in this work,we have developed an economical method for in situ fabrication of nanocomposites made of crystalline few-layer graphene sheets loaded with ultrafine SnO_(2)nanocrystals,using short exposure of microwave to xerogel of graphene oxide(GO)and tin tetrachloride containing minute catalyzing dispersoids of chemically reduced GO(RGO).The resultant nanocomposites(SnO_(2)@MWG)enabled significantly quickened redox processes as SIB anode,which led to remarkable full anode-specific capacity reaching 538 mAh g^(−1)at 0.05 A g^(−1)(about 1.45 times of the theoretical capacity of graphite for the LIB),in addition to outstanding rate performance over prolonged charge–discharge cycling.Anodes based on the optimized SnO_(2)@MWG delivered stable performance over 2000 cycles even at a high current density of 5 A g^(−1),and capacity retention of over 70.4%was maintained at a high areal loading of 3.4 mg cm^(−2),highly desirable for high energy density SIBs to rival the current benchmark LIBs.展开更多
Lithium-sulfur(Li-S) batteries can provide far higher energy density than currently commercialized lithium ion batteries, but challenges remain before it they are used in practice.One of the challenges is the shuttle ...Lithium-sulfur(Li-S) batteries can provide far higher energy density than currently commercialized lithium ion batteries, but challenges remain before it they are used in practice.One of the challenges is the shuttle effect that originates from soluble intermediates, like lithium polysulfides. To address this issue, we report a novel laminar composite, N,O-carboxymethyl chitosan-reduced graphene oxide(CC-rGO), which is manufactured via the self-assembly of CC onto GO and subsequent reduction of GO under an extreme condition of 1 Pa and-50°C. The synthesized laminar CC-rGO composite is mixed with acetylene black(AB) and coated on a commercial polypropylene(PP) membrane, resulting in a separator(CC-rGO/AB/PP) that can not only completely suppress the polysulfides penetration, but also can accelerate the lithium ion transportation, providing a Li-S battery with excellent cyclic stability and rate capability. As confirmed by theoretic simulations, this unique feature of CC-rGO is attributed to its strong repulsive interaction to polysulfide anions and its benefit for fast lithium ion transportation through the paths paved by the heteroatoms in CC.展开更多
In order to improve the absorbing properties of M- type barium ferrite absorbing materials, M-type barium ferrite/graphene oxide composites with different graphene oxide contents were synthesized by the sol-gel autoco...In order to improve the absorbing properties of M- type barium ferrite absorbing materials, M-type barium ferrite/graphene oxide composites with different graphene oxide contents were synthesized by the sol-gel autocombustion method. X-ray diffraction (XRD), a scanning electronic microscopy ( SEM ), a physical properties measurement system (PPMS-9), and a vector network analyzer were used to analyze their structure, surface morphology, magnetic and absorbing properties, respectively. The results show that the absorbing band of the composite absorbing material is widened and the absorbing strength is increased compared with the pure M-type barium ferrite. The sample with the content of doped graphene oxide of 3% has the minimum reflectivity at 10 to 18 GHz frequencies. Hence, the doped graphene oxide effectively improves the absorbing properties of M-type barium ferrite.展开更多
Graphene oxide(GO)is regarded as a promising candidate to construct solar absorbers for addressing freshwater crisis,but the easy delamination of GO in water poses a critical challenge for practical solar desalination...Graphene oxide(GO)is regarded as a promising candidate to construct solar absorbers for addressing freshwater crisis,but the easy delamination of GO in water poses a critical challenge for practical solar desalination.Herein,we improve the stability of GO membranes by a self-crosslinking poly(ionic liquid)(PIL)in a mild condition,which crosslinks neighbouring GO nanosheets without blemishing the hydrophilic structure of GO.By further adding carbon nanotubes(CNTs),the sandwiched GO/CNT@PIL(GCP)membrane displays a good stability in pH=1 or 13 solution even for 270 days.The molecular dynamics simulation results indicate that the generation of water nanofluidics in nanochannels of GO nanosheets remarkably reduces the water evaporation enthalpy in GCP membrane,compared to bulk water.Consequently,the GCP membrane exhibits a high evaporation rate(1.87 kg m^(-2)h^(-1))and displays stable evaporation rates for 14 h under 1 kW m^(-2)irradiation.The GCP membrane additionally works very well when using different water sources(e.g.,dye-polluted water)or even strong acidic solution(pH=1)or basic solution(pH=13).More importantly,through bundling pluralities of GCP membrane,an efficient solar desalination device is developed to produce drinkable water from seawater.The average daily drinkable water amount in sunny day is 10.1 kg m^(-2),which meets with the daily drinkable water needs of five adults.The high evaporation rate,long-time durability and good scalability make the GCP membrane an outstanding candidate for practical solar seawater desalination.展开更多
Reduced graphene oxide(rGO)enhanced B_(4)C ceramics was prepared by SPS sintering,the enhancement effect of rGO on the microstructure and mechanical properties of composites was studied through experiments and numeric...Reduced graphene oxide(rGO)enhanced B_(4)C ceramics was prepared by SPS sintering,the enhancement effect of rGO on the microstructure and mechanical properties of composites was studied through experiments and numerical simulation.The results show that the composite with 2wt%rGO has the best comprehensive mechanical properties.Compared with pure boron carbide,vickers hardness and bending strength are increased by 4.8%and 21.96%,respectively.The fracture toughness is improved by 25.71%.The microstructure observation shows that the improvement of mechanical properties is mainly attributed to the pullout and bridge mechanism of rGO and the crack deflection.Based on the cohesive force finite element method,the dynamic crack growth process of composites was simulated.The energy dissipation of B_(4)C/rGO multiphase ceramics during crack propagation was calculated and compared with that of pure boron carbide ceramics.The results show that the fracture energy dissipation can be effectively increased by adding graphene.展开更多
The method to increase PtRu utilization and its catalytic activity of PtRu nanoparticles supported on reduced graphene oxide(RGO)by avoiding its restacking was proposed with the aim of developing an active catalyst fo...The method to increase PtRu utilization and its catalytic activity of PtRu nanoparticles supported on reduced graphene oxide(RGO)by avoiding its restacking was proposed with the aim of developing an active catalyst for a direct methanol fuel cell.The heat treatment at 200◦C of the GO aerogel(GOA)prepared by freeze drying of GO ice was introduced to weaken the attractive force of the hydrogen bonding between the GO sheets followed by the composite with the nanoparticles,i.e.,ketjenblack(KB),TiO_(2)and Ti_(4)O_(7),at different weight ratios.The catalyst supported on the heat-treated GOA(RGOA),PtRu/RGOA,improved the PtRu utilization to some extent and also increased the ECSA and mass activity compared to that of PtRu/RGO.RGOA had fewer oxygen functional groups,especially the epoxy groups.Due to the treatment and composite,the PtRu utilization was increased from 66.5%for PtRu/RGO to 128.6%for PtRu/RGOA+Ti_(4)O_(7)(4:1)and the mass activity was improved from 50.7 A/g-PtRu for PtRu/RGO to 130.5 A/g-PtRu for PtRu/RGOA+Ti_(4)O_(7)(1:1).The Ti_(4)O_(7)nanoparticles showed the best catalytic performance for the composite suggesting that the strong interaction between Ti_(4)O_(7)and the Pt nanoparticles was effective due to its high electronic conductivity.展开更多
Engineering ceramics with high strength,toughness and electromagnetic interference(EMI)shielding effectiveness(SE)are highly desirable as electromagnetic protecting material in harsh environment.Herein,we show that bo...Engineering ceramics with high strength,toughness and electromagnetic interference(EMI)shielding effectiveness(SE)are highly desirable as electromagnetic protecting material in harsh environment.Herein,we show that both excellent mechanical and EMI shielding performance can be realized in alumina composites embedded with highly aligned reduced graphene oxide(RGO),which are readily prepared via sintering of core-shell structured RGO@Al_(2)O_(3)nanoplates with pressure.Compared to monolithic Al_(2)O_(3),the highly aligned RGO/Al_(2)O_(3)composites show simultaneously improved strength and toughness up to~26.1%and~60.2%,respectively.The steeply rising R-curve behavior proves the better crack tolerance in the highly aligned structure with respect to randomly oriented one.Moreover,the RGO/Al_(2)O_(3)composites also exhibit a high specific EMI SE reaching~34 dB/mm in K band,due to the reflection and highly enhanced absorption after percolation in the out-of-plane direction.These findings provide a novel strategy of designing mechanically reliable engineering ceramic for EMI shielding.展开更多
This research was based on the manufacture of new composite materials that offer technological possibilities in the development of new devices with greater efficiency. Electrospinning was used to form nylon 66/-tetra-...This research was based on the manufacture of new composite materials that offer technological possibilities in the development of new devices with greater efficiency. Electrospinning was used to form nylon 66/-tetra-(para-aminophenyl) porphyrin (H2T(p-NH2)PP)/graphene oxide (GO) composite film. Graphene oxide coatings were obtained from graphite, through mechanical exfoliation followed by calcination and ultrasonic agitation in an oxidant solution. These samples were characterized under SEM, FTIR, Raman spectroscopy, UV-vis and R-X techniques. On the other hand, H2T(p-NH2)PP was synthesized in two steps?process by the Rothemun reaction and the Adler Method and it was integrated within nylon polyamide fibers by direct addition of a hexamethylenediamine/adipoyl chloride reactant mixture. The polymerization of the nylon/H2T(p-NH2)PP species occurs in such a way that it starts or ends on the four peripherals-NH2 groups, connected and located in the same molecular plane of H2T(p-NH2)PP, forming nylon chains at the periphery of the macrocycle. The association of GO with nylon/H2T(p-NH2)PP fibers is performed by dipole-dipole interaction and hydrogen bonding. To take advantage of the properties of these materials, they were combined as a ternary composite.展开更多
Poly(decamethylene terephthalamide/decamethylene isophthalamide)-block-polyvinyl alcoho)(PA10 T/10 IPEG) copolymer/graphene oxide(GO) composites were prepared via in-situ melt polymerization and two different nano-fil...Poly(decamethylene terephthalamide/decamethylene isophthalamide)-block-polyvinyl alcoho)(PA10 T/10 IPEG) copolymer/graphene oxide(GO) composites were prepared via in-situ melt polymerization and two different nano-filler addition approaches were compared. The relationship between the micro-structure and performance of the elastomer composites prepared by one-step and two-step methods was explored. The results show that the two-step method significantly promoted the dispersion of the GO in a polymer matrix, and facilitated the grafting of more hard molecular chains. Thus, the elastic modulus and tensile strength of the nanocomposite have been significantly improved by the presence of GO. This was because of the strong interaction between the functional groups on the surface of the GO and the hard molecular chains. This would be also be favorable to load transfer across the interface. Additionally, the elongation at the break of composites increased by 10% with the addition of a small amount of GO(0.2% wt). This is because hard domains tend to be enriched on the surface of GO in composites and act as a lubricating layer at the interface between the GO and matrix, leading to increased deformation ability. This work provides an effective strategy to prepare elastomer composites with high strength and toughness.展开更多
Photocatalysis is regarded as an ideal technology for solving the urgent environmental and energy issues that we face today.Among the reported photocatalysts,molybdenum disulfide(MoS2) is very promising for applicat...Photocatalysis is regarded as an ideal technology for solving the urgent environmental and energy issues that we face today.Among the reported photocatalysts,molybdenum disulfide(MoS2) is very promising for applications in hydrogen production and pollutant photodegradation.However,its lack of active sites and the difficulty of recovering catalysts in powder form have hindered its wide application.Here,we report the successful preparation of a macroscopic visible-light responsive MoS2/reduced graphene oxide(MoS2/RGO) aerogel.The obtained MoS2/RGO aerogel exhibits enhanced photocatalytic activity towards hydrogen production and photoreduction of Cr(Ⅵ) in comparison with the MoS2 powder.In addition,the low density(56.1 mg/cm^3) of the MoS2/RGO aerogel enables it to be used as an efficient adsorption material for organic pollutants.Our results demonstrate that this very promising multifunctional aerogel has potential applications in environmental remediation and clean energy production.展开更多
The high-energy lithium/sulfur(Li/S) battery has become a very popular topic of research in recent years due to its high theoretical capacity of 1672 m Ah/g. However, the polysulfide shuttle effect remains of great co...The high-energy lithium/sulfur(Li/S) battery has become a very popular topic of research in recent years due to its high theoretical capacity of 1672 m Ah/g. However, the polysulfide shuttle effect remains of great concern with a great number of publications dedicated to its mitigation. In this contribution, a three-dimensional(3D) reduced graphene oxide/activated carbon(RGO/AC) film, synthesized by a simple hydrothermal method and convenient mechanical pressing, is sandwiched between the separator and the sulfur-based cathode, acting as a functional interlayer to capture and trap polysulfide species. Consequently, the Li/S cell with this interlayer shows an impressive initial discharge capacity of 1078 m Ah/g and a reversible capacity of 655 m Ah/g even after 100 cycles. The RGO/AC interlayer impedes the movement of polysulfide while providing unimpeded channels for lithium ion mass transfer. Therefore, the RGO/AC interlayer with a well-designed structure represents strong potential for high-performance Li/S batteries.展开更多
Natural intercalation of the graphite oxide, obtained as a product of Hummer's method, via ultra-sonication of water dispersed graphite oxide has been carried out to obtain graphene oxide(GO) and thermally reduced ...Natural intercalation of the graphite oxide, obtained as a product of Hummer's method, via ultra-sonication of water dispersed graphite oxide has been carried out to obtain graphene oxide(GO) and thermally reduced graphene oxide(RGO).Here we report the effect of metallic nitrate on the oxidation properties of graphite and then formation of metallic oxide(MO) composites with GO and RGO for the first time. We observed a change in the efficiency of the oxidation process as we replaced the conventionally used sodium nitrate with that of nickel nitrate Ni(NO_3)_2, cadmium nitrate Cd(NO_3)_2,and zinc nitrate Zn(NO_3)_2. The structural properties were investigated by x-ray diffraction and observed the successful formation of composite of MO–GO and MO–RGO(M = Zn, Cd, Ni). We sought to study the effect on the oxidation process through optical characterization via UV-Vis spectroscopy and Fourier Transform Infrared(FTIR) spectroscopy.Moreover, Thermo Gravimetric Analysis(TGA) was carried out to confirm 〉 90% weight loss in each process thus proving the reliability of the oxidation cycles. We have found that the nature of the oxidation process of graphite powder and its optical and electrochemical characteristics can be tuned by replacing the sodium nitrate(NaNO_3) by other metallic nitrates as Cd(NO_3)_2, Ni(NO_3)_2, and Zn(NO_3)_2. On the basis of obtained results, the synthesized GO and RGO may be expected as a promising material in antibacterial activity and in electrodes fabrication for energy devices such as solar cell, fuel cell,and super capacitors.展开更多
Carbon nanotubes/graphene composites have superior mechanical, electrical and electrochemistry prop- erties with carbon nanotubes as a hydrophobicity boosting agent. Their extraordinary hydrophobic performance is high...Carbon nanotubes/graphene composites have superior mechanical, electrical and electrochemistry prop- erties with carbon nanotubes as a hydrophobicity boosting agent. Their extraordinary hydrophobic performance is highly suitable for electrode applications in lithium ion batteries and supercapacitors which often employ organic electrolytes. Also the hydrophobic features enable the oil enrichment for the crude oil separation from seawater. The ever reported synthesis routes towards such a composite either involve complicated multi-step reactions, e.g., chemical vapor depositions, or lead to insufficient extru- sion of carbon nanotubes in the chemical reductions of graphene oxide, e.g., fully embedding between the compact graphene oxide sheets. As a consequence, the formation of standalone carbon nanotubes over graphene sheets remains of high interests. Herein we use the facile flash light irradiation method to induce the reduction of graphene oxides in the presence of carbon nanotubes. Photographs, micrographs, X-ray diffraction, infrared spectroscopy and thermogravimetric analysis all indicate that graphene oxides has been reduced. And the contact angle tests confirm the excellent hydrophobic perfor- mances of the synthesized carbon nanotube/reduced graphene oxide composite films. This one-step treatment represents a straightforward and high efficiency way for the reduction of carbon nanotubes/graphene oxides composites.展开更多
Polyvinylpyrrolidone-reduced graphene oxide was prepared by modified hummers method and was used as adsorbent for removing Cu ions from wastewater. The effects of contact time and ions concentration on adsorption capa...Polyvinylpyrrolidone-reduced graphene oxide was prepared by modified hummers method and was used as adsorbent for removing Cu ions from wastewater. The effects of contact time and ions concentration on adsorption capacity were examined. The maximum adsorption capacity of 1689 mg/g was observed at an initial p H value of 3.5 after agitating for 10 min. It was demonstrated that polyvinylpyrrolidone-reduced graphene oxide had a huge adsorption capacity for Cu ions, which was 10 times higher than maximal value reported in previous works. The adsorption mechanism was also discussed by density functional theory. It demonstrates that Cu ions are attracted to surface of reduced graphene oxide by C atoms in reduced graphene oxide modified by polyvinylpyrrolidone through physisorption processes, which may be responsible for the higher adsorption capacity. Our results suggest that polyvinylpyrrolidone-reduced graphene oxide is an effective adsorbent for removing Cu ions in wastewater. It also provides a new way to improve the adsorption capacity of reduced graphene oxide for dealing with the heavy metal ion in wastewater.展开更多
This research work aims to reduce the band gap of thin layers of titanium oxide by the incorporation of graphene oxide sheets. Thin layers of the TiO2-GO composites were prepared on a glass substrate by the spin-coati...This research work aims to reduce the band gap of thin layers of titanium oxide by the incorporation of graphene oxide sheets. Thin layers of the TiO2-GO composites were prepared on a glass substrate by the spin-coating technique from GO and an aqueous solution of TiO2. A significant decrease in optical band gap was observed at the TiO2-GO compound compared to that of pure TiO2. Samples as prepared were characterized using XRD, SEM and UV-visible spectra. XRD analysis revealed the amorphous nature of the deposited layers. Scanning electron microscope reveals the dispersion of graphene nanofiles among titanium oxide nanoparticles distributed at the surface with an almost uniform size distribution. The band gap has been calculated and is around 2 eV after incorporation of Graphene oxide. The chemical bond C-Ti between the titanium oxide and graphene sheets is at the origin of this reduction.展开更多
The hybrid of carbon nanotube(CNT)and reduced graphene oxide(RGO)reinforced ZK61 composite was fabricated by a hot extrusion process.Compared with the raw ZK61 alloy and single-reinforced composites,the hybrid-reinfor...The hybrid of carbon nanotube(CNT)and reduced graphene oxide(RGO)reinforced ZK61 composite was fabricated by a hot extrusion process.Compared with the raw ZK61 alloy and single-reinforced composites,the hybrid-reinforced by RGO+CNT complex exhibited significant enhancements both in mechanical and thermal performance.By adjusting the proportion of RGO and CNT in ZK61 alloy,the obtained optimum ZK61/(0.06 wt%RGO+0.54 wt%CNT)composite exhibited increase of 25.4%in yield strength,26.5%in ultimate tensile strength,104%in failure strain and 30.4%in thermal conductivity,respectively,in comparison with ZK61 alloy.The superior properties of the nano-hybrid composite are attributed to the synergetic effects of RGO and CNT,leading to a uniform dispersion and integrated structure as well as the enhanced interfacial bonding with matrix.The strengthening ability of RGO and CNT was calculated to quantify their individual contribution to the improvement in mechanical and thermal properties of the ZK61 matrix composite.The RGO+CNT hybrids provide a promising way to develop Mg matrix composites with impressive performances.展开更多
Fabrication of graphene/ceramic composites commonly requires a high-temperature sintering step with long times as well as a vacuum or inert atmosphere,which not only results in property degradation but also significan...Fabrication of graphene/ceramic composites commonly requires a high-temperature sintering step with long times as well as a vacuum or inert atmosphere,which not only results in property degradation but also significant equipment complexity and manufacturing costs.In this work,the ambient flash sintering behavior of reduced graphene oxide/3 mol% yttria-stabilized ZrO_(2)(rGO/3 YSZ) composites utilizing rGO as both a composite component and a conductive additive is reported.When the sintering condition is carefully optimized,a dense and conductive composite can be achieved at room temperature and in the air within 20 s.The role of the rGO in the FS of the rGO/3 YSZ composites is elucidated,especially with the assistance of a separate investigation on the thermal runaway behavior of the rGO.The work suggests a promising fabrication route for rGO/ceramic composites where the vacuum and furnace are not needed,which is of interest in terms of simplifying the fabrication equipment for energy and cost savings.展开更多
文摘The corrosion inhibition of metallic substrates is a prime issue for many potential applications where corrosion plays a crucial role. The development of carbon based on functionalized coatings could increase the lifetime of metallic substrates by inhibiting the corrosion process. Present work is an effort to develop a corrosion inhibiting composite coating of graphene oxide and polypyrrole for AISI (American Iron and Steel Institute) type 304 stainless steel substrates. The electrochemical galvanostatic deposition process was applied for coating development. The coating morphology and ability to cover the substrate surface was analyzed with a high-resolution scanning electron microscope. The coating's structural and electronic properties were analyzed with Raman spectroscopy. The investigation of corrosion inhibition involved open circuit potential, Tafel, and voltammetry analysis. The standard salt test ASTM (American Society for Testing and Materials) G48A for stainless steel substrate has also been studied. Significant enhancement of corrosion potential as well as pitting potential for the composite coated substrates has been noted. Furthermore, corrosion and breakdown potential increased upon changing the material from graphene oxide to its composite coating. During the salt test analysis, the durability of the composite coating was noted up to 72 h, which is the standard time scale. Based on experimental analysis, this composite material can be used as an effective carbon based on functionalized corrosion inhibitor for stainless steel substrates to increase their lifetime.
基金supported by the National Natural Science Foundation of China(Grant Nos.51073008 and 51103005)。
文摘Graphene oxide(GO)has recently attracted substantial interest as a possible reinforcing agent for next generation rubber composite materials.In this research,GO was incorporated in natural rubber(NR)composites through latex co-coagulation technique.The microstructures of GO/NR composites were characterized through a combination of transmission electron microscope,scanning electron microscope,X-ray diffraction,Fourier transform infrared spectroscopy,and Differential scanning calorimeter.The results showed that highly exfoliated GO sheets were finely dispersed into NR rubber matrix with strong interface interaction between GO and NR.The mechanical properties of the GO/NR composites were further evaluated.The results showed that the tensile strength,tear strength and modulus can be significantly improved at a content of less than 2 phr.Especially,GO exhibited specific reinforce mechanism in NR due to the stress-induced crystallization effects of NR.The stress transfer from the NR to the GO sheets and the hindrance of GO sheets to the stress-induced crystallization of NR were further displayed in stress-strain behavior of GO/NR composites.These enhanced properties were attributed to the high surface area of GO sheets and highly exfoliated microstructures of GO sheets in NR.
基金The authors would like to acknowledge for the financial supports given by Fundamental Research Grant Scheme (FRGS/1/2019/TK02/CURTIN/03/2) from Ministry of Higher Education (MOHE),Malaysia.
文摘The rising production of produced water from oilfields had been proven to bring detrimental environmental effects.In this study,an efficient,recyclable,and environmental-friendly reduced graphene oxide immobilizedκ-Carrageenan hydrogel composite(κCaGO)was fabricated as an alternative sorbent for crude oil-in-water demulsification.Polyethyleneimine(PEI)was employed to form a stable hydrogel composite.The conditions for the immobilization of graphene oxide(GO)on PEI-modifiedκ-Carrageenan(κC)beads were optimized appropriately.An immobilization yield of 77%was attained at 2%PEI,2 h immobilization activation time,and pH 6.5.Moreover,the synthesizedκCaGO is capable of demulsification with an average demulsification efficiency of 70%.It was found that the demulsification efficiency increases with salinity andκCaGO dosage,and it deteriorates under alkaline condition.These phenomena can be attributed to the interfacial interactions betweenκCaGO and the emulsion.Furthermore,theκCaGO can be recycled to use for up to six cycles without significant leaching and degradation.As such,the synthesizedκCaGO could be further developed as a potential sorbent substitute for the separation of crude oil from produced water.
基金funded by the Zhengzhou Materials Genome Institute,the National Talents Program of China,and Key Innovation Projects of the Zhengzhou Municipal City of China.
文摘The main bottleneck against industrial utilization of sodium ion batteries(SIBs)is the lack of high-capacity electrodes to rival those of the benchmark lithium ion batteries(LIBs).Here in this work,we have developed an economical method for in situ fabrication of nanocomposites made of crystalline few-layer graphene sheets loaded with ultrafine SnO_(2)nanocrystals,using short exposure of microwave to xerogel of graphene oxide(GO)and tin tetrachloride containing minute catalyzing dispersoids of chemically reduced GO(RGO).The resultant nanocomposites(SnO_(2)@MWG)enabled significantly quickened redox processes as SIB anode,which led to remarkable full anode-specific capacity reaching 538 mAh g^(−1)at 0.05 A g^(−1)(about 1.45 times of the theoretical capacity of graphite for the LIB),in addition to outstanding rate performance over prolonged charge–discharge cycling.Anodes based on the optimized SnO_(2)@MWG delivered stable performance over 2000 cycles even at a high current density of 5 A g^(−1),and capacity retention of over 70.4%was maintained at a high areal loading of 3.4 mg cm^(−2),highly desirable for high energy density SIBs to rival the current benchmark LIBs.
基金supported by the National Key Research and Development Project (Grant No. 2018YFE0124800)the National Key Research Program of China (Grant No.2022YFA1503100)+7 种基金Science and Technology Project of Jiangsu Province (Grant No. BZ2020011)National Natural Science Foundation of China (Grants No. 22173067)the Science and Technology Development FundMacao SAR(FDCT No. 0052/2021/A)Collaborative Innovation Center of Suzhou Nano Science&Technologythe Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)the 111 ProjectJoint International Research Laboratory of Carbon-Based Functional Materials and Devices
文摘Lithium-sulfur(Li-S) batteries can provide far higher energy density than currently commercialized lithium ion batteries, but challenges remain before it they are used in practice.One of the challenges is the shuttle effect that originates from soluble intermediates, like lithium polysulfides. To address this issue, we report a novel laminar composite, N,O-carboxymethyl chitosan-reduced graphene oxide(CC-rGO), which is manufactured via the self-assembly of CC onto GO and subsequent reduction of GO under an extreme condition of 1 Pa and-50°C. The synthesized laminar CC-rGO composite is mixed with acetylene black(AB) and coated on a commercial polypropylene(PP) membrane, resulting in a separator(CC-rGO/AB/PP) that can not only completely suppress the polysulfides penetration, but also can accelerate the lithium ion transportation, providing a Li-S battery with excellent cyclic stability and rate capability. As confirmed by theoretic simulations, this unique feature of CC-rGO is attributed to its strong repulsive interaction to polysulfide anions and its benefit for fast lithium ion transportation through the paths paved by the heteroatoms in CC.
基金The National Natural Science Foundation of China(No.51205282)
文摘In order to improve the absorbing properties of M- type barium ferrite absorbing materials, M-type barium ferrite/graphene oxide composites with different graphene oxide contents were synthesized by the sol-gel autocombustion method. X-ray diffraction (XRD), a scanning electronic microscopy ( SEM ), a physical properties measurement system (PPMS-9), and a vector network analyzer were used to analyze their structure, surface morphology, magnetic and absorbing properties, respectively. The results show that the absorbing band of the composite absorbing material is widened and the absorbing strength is increased compared with the pure M-type barium ferrite. The sample with the content of doped graphene oxide of 3% has the minimum reflectivity at 10 to 18 GHz frequencies. Hence, the doped graphene oxide effectively improves the absorbing properties of M-type barium ferrite.
基金the financial support of the National Key R&D Program of China(No.2019YFC1806000)the Huazhong University of Science and Technology(No.3004013118)+2 种基金support from the National Natural Science Foundation of China(No.51903099)Huazhong University of Science and Technology(No.3004013134)the 100 Talents Program of the Hubei Provincial Government.Z.D.thanks the Postdoctoral Science Foundation of China(No.0106013063).
文摘Graphene oxide(GO)is regarded as a promising candidate to construct solar absorbers for addressing freshwater crisis,but the easy delamination of GO in water poses a critical challenge for practical solar desalination.Herein,we improve the stability of GO membranes by a self-crosslinking poly(ionic liquid)(PIL)in a mild condition,which crosslinks neighbouring GO nanosheets without blemishing the hydrophilic structure of GO.By further adding carbon nanotubes(CNTs),the sandwiched GO/CNT@PIL(GCP)membrane displays a good stability in pH=1 or 13 solution even for 270 days.The molecular dynamics simulation results indicate that the generation of water nanofluidics in nanochannels of GO nanosheets remarkably reduces the water evaporation enthalpy in GCP membrane,compared to bulk water.Consequently,the GCP membrane exhibits a high evaporation rate(1.87 kg m^(-2)h^(-1))and displays stable evaporation rates for 14 h under 1 kW m^(-2)irradiation.The GCP membrane additionally works very well when using different water sources(e.g.,dye-polluted water)or even strong acidic solution(pH=1)or basic solution(pH=13).More importantly,through bundling pluralities of GCP membrane,an efficient solar desalination device is developed to produce drinkable water from seawater.The average daily drinkable water amount in sunny day is 10.1 kg m^(-2),which meets with the daily drinkable water needs of five adults.The high evaporation rate,long-time durability and good scalability make the GCP membrane an outstanding candidate for practical solar seawater desalination.
基金by the National Natural Science Foundation of China(52002299)。
文摘Reduced graphene oxide(rGO)enhanced B_(4)C ceramics was prepared by SPS sintering,the enhancement effect of rGO on the microstructure and mechanical properties of composites was studied through experiments and numerical simulation.The results show that the composite with 2wt%rGO has the best comprehensive mechanical properties.Compared with pure boron carbide,vickers hardness and bending strength are increased by 4.8%and 21.96%,respectively.The fracture toughness is improved by 25.71%.The microstructure observation shows that the improvement of mechanical properties is mainly attributed to the pullout and bridge mechanism of rGO and the crack deflection.Based on the cohesive force finite element method,the dynamic crack growth process of composites was simulated.The energy dissipation of B_(4)C/rGO multiphase ceramics during crack propagation was calculated and compared with that of pure boron carbide ceramics.The results show that the fracture energy dissipation can be effectively increased by adding graphene.
基金supported by JSPS KAKENHI Grant Number JP18H01772 and 21H01698.
文摘The method to increase PtRu utilization and its catalytic activity of PtRu nanoparticles supported on reduced graphene oxide(RGO)by avoiding its restacking was proposed with the aim of developing an active catalyst for a direct methanol fuel cell.The heat treatment at 200◦C of the GO aerogel(GOA)prepared by freeze drying of GO ice was introduced to weaken the attractive force of the hydrogen bonding between the GO sheets followed by the composite with the nanoparticles,i.e.,ketjenblack(KB),TiO_(2)and Ti_(4)O_(7),at different weight ratios.The catalyst supported on the heat-treated GOA(RGOA),PtRu/RGOA,improved the PtRu utilization to some extent and also increased the ECSA and mass activity compared to that of PtRu/RGO.RGOA had fewer oxygen functional groups,especially the epoxy groups.Due to the treatment and composite,the PtRu utilization was increased from 66.5%for PtRu/RGO to 128.6%for PtRu/RGOA+Ti_(4)O_(7)(4:1)and the mass activity was improved from 50.7 A/g-PtRu for PtRu/RGO to 130.5 A/g-PtRu for PtRu/RGOA+Ti_(4)O_(7)(1:1).The Ti_(4)O_(7)nanoparticles showed the best catalytic performance for the composite suggesting that the strong interaction between Ti_(4)O_(7)and the Pt nanoparticles was effective due to its high electronic conductivity.
基金supported by the National Natural Science Foundation of China(Nos.52122203,51972053,and 9163204)Innovation Program of Shanghai Municipal Education Commission(2023ZKZD43)sponsored by Shanghai Sailing Program(No.22YF1400300).
文摘Engineering ceramics with high strength,toughness and electromagnetic interference(EMI)shielding effectiveness(SE)are highly desirable as electromagnetic protecting material in harsh environment.Herein,we show that both excellent mechanical and EMI shielding performance can be realized in alumina composites embedded with highly aligned reduced graphene oxide(RGO),which are readily prepared via sintering of core-shell structured RGO@Al_(2)O_(3)nanoplates with pressure.Compared to monolithic Al_(2)O_(3),the highly aligned RGO/Al_(2)O_(3)composites show simultaneously improved strength and toughness up to~26.1%and~60.2%,respectively.The steeply rising R-curve behavior proves the better crack tolerance in the highly aligned structure with respect to randomly oriented one.Moreover,the RGO/Al_(2)O_(3)composites also exhibit a high specific EMI SE reaching~34 dB/mm in K band,due to the reflection and highly enhanced absorption after percolation in the out-of-plane direction.These findings provide a novel strategy of designing mechanically reliable engineering ceramic for EMI shielding.
文摘This research was based on the manufacture of new composite materials that offer technological possibilities in the development of new devices with greater efficiency. Electrospinning was used to form nylon 66/-tetra-(para-aminophenyl) porphyrin (H2T(p-NH2)PP)/graphene oxide (GO) composite film. Graphene oxide coatings were obtained from graphite, through mechanical exfoliation followed by calcination and ultrasonic agitation in an oxidant solution. These samples were characterized under SEM, FTIR, Raman spectroscopy, UV-vis and R-X techniques. On the other hand, H2T(p-NH2)PP was synthesized in two steps?process by the Rothemun reaction and the Adler Method and it was integrated within nylon polyamide fibers by direct addition of a hexamethylenediamine/adipoyl chloride reactant mixture. The polymerization of the nylon/H2T(p-NH2)PP species occurs in such a way that it starts or ends on the four peripherals-NH2 groups, connected and located in the same molecular plane of H2T(p-NH2)PP, forming nylon chains at the periphery of the macrocycle. The association of GO with nylon/H2T(p-NH2)PP fibers is performed by dipole-dipole interaction and hydrogen bonding. To take advantage of the properties of these materials, they were combined as a ternary composite.
基金the financial support from the Jiangsu Provincial Key Research and Development Program (Grant No. BE2019008)the Natural Science Foundation of China (Grant No. 51573103, 21274094 and 21304060)。
文摘Poly(decamethylene terephthalamide/decamethylene isophthalamide)-block-polyvinyl alcoho)(PA10 T/10 IPEG) copolymer/graphene oxide(GO) composites were prepared via in-situ melt polymerization and two different nano-filler addition approaches were compared. The relationship between the micro-structure and performance of the elastomer composites prepared by one-step and two-step methods was explored. The results show that the two-step method significantly promoted the dispersion of the GO in a polymer matrix, and facilitated the grafting of more hard molecular chains. Thus, the elastic modulus and tensile strength of the nanocomposite have been significantly improved by the presence of GO. This was because of the strong interaction between the functional groups on the surface of the GO and the hard molecular chains. This would be also be favorable to load transfer across the interface. Additionally, the elongation at the break of composites increased by 10% with the addition of a small amount of GO(0.2% wt). This is because hard domains tend to be enriched on the surface of GO in composites and act as a lubricating layer at the interface between the GO and matrix, leading to increased deformation ability. This work provides an effective strategy to prepare elastomer composites with high strength and toughness.
基金supported by the National Natural Science Foundation of China (U1232119, 21403172)the Sichuan Youth Science and Technology Foundation (2013JQ0034, 2014JQ0017)the Innovative Research Team of Sichuan Province (2016TD0011)~~
文摘Photocatalysis is regarded as an ideal technology for solving the urgent environmental and energy issues that we face today.Among the reported photocatalysts,molybdenum disulfide(MoS2) is very promising for applications in hydrogen production and pollutant photodegradation.However,its lack of active sites and the difficulty of recovering catalysts in powder form have hindered its wide application.Here,we report the successful preparation of a macroscopic visible-light responsive MoS2/reduced graphene oxide(MoS2/RGO) aerogel.The obtained MoS2/RGO aerogel exhibits enhanced photocatalytic activity towards hydrogen production and photoreduction of Cr(Ⅵ) in comparison with the MoS2 powder.In addition,the low density(56.1 mg/cm^3) of the MoS2/RGO aerogel enables it to be used as an efficient adsorption material for organic pollutants.Our results demonstrate that this very promising multifunctional aerogel has potential applications in environmental remediation and clean energy production.
基金financial support from the National Natural Science Foundation of China(grant no.21406052the Program for the Outstanding Young Talents of Hebei Province(grant no.BJ2014010)the Scientific Research Foundation for Selected Overseas Chinese Scholars,Ministry of Human Resources and Social Security of China(grant no.CG2015003002)
文摘The high-energy lithium/sulfur(Li/S) battery has become a very popular topic of research in recent years due to its high theoretical capacity of 1672 m Ah/g. However, the polysulfide shuttle effect remains of great concern with a great number of publications dedicated to its mitigation. In this contribution, a three-dimensional(3D) reduced graphene oxide/activated carbon(RGO/AC) film, synthesized by a simple hydrothermal method and convenient mechanical pressing, is sandwiched between the separator and the sulfur-based cathode, acting as a functional interlayer to capture and trap polysulfide species. Consequently, the Li/S cell with this interlayer shows an impressive initial discharge capacity of 1078 m Ah/g and a reversible capacity of 655 m Ah/g even after 100 cycles. The RGO/AC interlayer impedes the movement of polysulfide while providing unimpeded channels for lithium ion mass transfer. Therefore, the RGO/AC interlayer with a well-designed structure represents strong potential for high-performance Li/S batteries.
文摘Natural intercalation of the graphite oxide, obtained as a product of Hummer's method, via ultra-sonication of water dispersed graphite oxide has been carried out to obtain graphene oxide(GO) and thermally reduced graphene oxide(RGO).Here we report the effect of metallic nitrate on the oxidation properties of graphite and then formation of metallic oxide(MO) composites with GO and RGO for the first time. We observed a change in the efficiency of the oxidation process as we replaced the conventionally used sodium nitrate with that of nickel nitrate Ni(NO_3)_2, cadmium nitrate Cd(NO_3)_2,and zinc nitrate Zn(NO_3)_2. The structural properties were investigated by x-ray diffraction and observed the successful formation of composite of MO–GO and MO–RGO(M = Zn, Cd, Ni). We sought to study the effect on the oxidation process through optical characterization via UV-Vis spectroscopy and Fourier Transform Infrared(FTIR) spectroscopy.Moreover, Thermo Gravimetric Analysis(TGA) was carried out to confirm 〉 90% weight loss in each process thus proving the reliability of the oxidation cycles. We have found that the nature of the oxidation process of graphite powder and its optical and electrochemical characteristics can be tuned by replacing the sodium nitrate(NaNO_3) by other metallic nitrates as Cd(NO_3)_2, Ni(NO_3)_2, and Zn(NO_3)_2. On the basis of obtained results, the synthesized GO and RGO may be expected as a promising material in antibacterial activity and in electrodes fabrication for energy devices such as solar cell, fuel cell,and super capacitors.
文摘Carbon nanotubes/graphene composites have superior mechanical, electrical and electrochemistry prop- erties with carbon nanotubes as a hydrophobicity boosting agent. Their extraordinary hydrophobic performance is highly suitable for electrode applications in lithium ion batteries and supercapacitors which often employ organic electrolytes. Also the hydrophobic features enable the oil enrichment for the crude oil separation from seawater. The ever reported synthesis routes towards such a composite either involve complicated multi-step reactions, e.g., chemical vapor depositions, or lead to insufficient extru- sion of carbon nanotubes in the chemical reductions of graphene oxide, e.g., fully embedding between the compact graphene oxide sheets. As a consequence, the formation of standalone carbon nanotubes over graphene sheets remains of high interests. Herein we use the facile flash light irradiation method to induce the reduction of graphene oxides in the presence of carbon nanotubes. Photographs, micrographs, X-ray diffraction, infrared spectroscopy and thermogravimetric analysis all indicate that graphene oxides has been reduced. And the contact angle tests confirm the excellent hydrophobic perfor- mances of the synthesized carbon nanotube/reduced graphene oxide composite films. This one-step treatment represents a straightforward and high efficiency way for the reduction of carbon nanotubes/graphene oxides composites.
基金the support by National Natural Science Foundation of China under grants (11202006)University’s Science and technology exploiture of Shangxi Province (20121010)the National Basic Research Program of China (G2010CB832701)
文摘Polyvinylpyrrolidone-reduced graphene oxide was prepared by modified hummers method and was used as adsorbent for removing Cu ions from wastewater. The effects of contact time and ions concentration on adsorption capacity were examined. The maximum adsorption capacity of 1689 mg/g was observed at an initial p H value of 3.5 after agitating for 10 min. It was demonstrated that polyvinylpyrrolidone-reduced graphene oxide had a huge adsorption capacity for Cu ions, which was 10 times higher than maximal value reported in previous works. The adsorption mechanism was also discussed by density functional theory. It demonstrates that Cu ions are attracted to surface of reduced graphene oxide by C atoms in reduced graphene oxide modified by polyvinylpyrrolidone through physisorption processes, which may be responsible for the higher adsorption capacity. Our results suggest that polyvinylpyrrolidone-reduced graphene oxide is an effective adsorbent for removing Cu ions in wastewater. It also provides a new way to improve the adsorption capacity of reduced graphene oxide for dealing with the heavy metal ion in wastewater.
文摘This research work aims to reduce the band gap of thin layers of titanium oxide by the incorporation of graphene oxide sheets. Thin layers of the TiO2-GO composites were prepared on a glass substrate by the spin-coating technique from GO and an aqueous solution of TiO2. A significant decrease in optical band gap was observed at the TiO2-GO compound compared to that of pure TiO2. Samples as prepared were characterized using XRD, SEM and UV-visible spectra. XRD analysis revealed the amorphous nature of the deposited layers. Scanning electron microscope reveals the dispersion of graphene nanofiles among titanium oxide nanoparticles distributed at the surface with an almost uniform size distribution. The band gap has been calculated and is around 2 eV after incorporation of Graphene oxide. The chemical bond C-Ti between the titanium oxide and graphene sheets is at the origin of this reduction.
基金supported by the National Key Research and Development Program of China (No.2021YFB3701100)the Beijing Natural Science Foundation (No.2192006)the National Natural Science Foundation of China (No.51801004).
文摘The hybrid of carbon nanotube(CNT)and reduced graphene oxide(RGO)reinforced ZK61 composite was fabricated by a hot extrusion process.Compared with the raw ZK61 alloy and single-reinforced composites,the hybrid-reinforced by RGO+CNT complex exhibited significant enhancements both in mechanical and thermal performance.By adjusting the proportion of RGO and CNT in ZK61 alloy,the obtained optimum ZK61/(0.06 wt%RGO+0.54 wt%CNT)composite exhibited increase of 25.4%in yield strength,26.5%in ultimate tensile strength,104%in failure strain and 30.4%in thermal conductivity,respectively,in comparison with ZK61 alloy.The superior properties of the nano-hybrid composite are attributed to the synergetic effects of RGO and CNT,leading to a uniform dispersion and integrated structure as well as the enhanced interfacial bonding with matrix.The strengthening ability of RGO and CNT was calculated to quantify their individual contribution to the improvement in mechanical and thermal properties of the ZK61 matrix composite.The RGO+CNT hybrids provide a promising way to develop Mg matrix composites with impressive performances.
基金supported by Shanghai Pujiang Program[No.18PJ1406500]the National Natural Science Foundation of China[No.51902197]the Start-up Foundation for the Youth Scholars of Shanghai Jiao Tong University[No.18×100040024]。
文摘Fabrication of graphene/ceramic composites commonly requires a high-temperature sintering step with long times as well as a vacuum or inert atmosphere,which not only results in property degradation but also significant equipment complexity and manufacturing costs.In this work,the ambient flash sintering behavior of reduced graphene oxide/3 mol% yttria-stabilized ZrO_(2)(rGO/3 YSZ) composites utilizing rGO as both a composite component and a conductive additive is reported.When the sintering condition is carefully optimized,a dense and conductive composite can be achieved at room temperature and in the air within 20 s.The role of the rGO in the FS of the rGO/3 YSZ composites is elucidated,especially with the assistance of a separate investigation on the thermal runaway behavior of the rGO.The work suggests a promising fabrication route for rGO/ceramic composites where the vacuum and furnace are not needed,which is of interest in terms of simplifying the fabrication equipment for energy and cost savings.