期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
In situ atomic-scale observation of monolayer graphene growth from SiC 被引量:3
1
作者 Kaihao Yu Wen Zhao +8 位作者 Xing Wu Jianing Zhuang Xiaohui Hu Qiubo Zhang Jun Sun Tao Xu Yang Chai Feng Ding Litao Sun 《Nano Research》 SCIE EI CAS CSCD 2018年第5期2809-2820,共12页
Because of its high compatibility with conventional microfabrication processing technology, epitaxial graphene (EG) grown on SiC shows exceptional promise for graphene-based electronics. However, to date, a detailed... Because of its high compatibility with conventional microfabrication processing technology, epitaxial graphene (EG) grown on SiC shows exceptional promise for graphene-based electronics. However, to date, a detailed understanding of the transformation from three-layer SiC to monolayer graphene is still lacking. Here, we demonstrate the direct atomic-scale observation of EG growth on a SiC (11^-00) surface at 1,000℃ by in situ transmission electron microscopy in combination with ab initio molecular dynamics (AIMD) simulations. Our detailed analysis of the growth dynamics of monolayer graphene reveals that three SiC (11^-00) layers decompose successively to form one graphene layer. Sublimation of the first layer causes the formation of carbon clusters containing short chains and hexagonal rings, which can be considered as the nuclei for graphene growth. Decomposition of the second layer results in the appearance of new chains connecting to the as-formed clusters and the formation of a network with large pores. Finally, the carbon atoms released from the third layer lead to the disappearance of the chains and large pores in the network, resulting in a whole graphene layer. Our study presents a clear picture of the epitaxial growth of the monolayer graphene from SiC and provides valuable information for future developments in SiC-derived EG technology. 展开更多
关键词 graphene epitaxial growth in situ transmissionelectron microscopy
原文传递
Fabrication and properties of silicene and silicene–graphene layered structures on Ir(111) 被引量:1
2
作者 孟蕾 王业亮 +2 位作者 张理智 杜世萱 高鸿钧 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第8期25-34,共10页
Silicene, a two-dimensional(2D) honeycomb structure similar to graphene, has been successfully fabricated on various substrates. This work will mainly review the syntheses and the corresponding prope√rties o√f silic... Silicene, a two-dimensional(2D) honeycomb structure similar to graphene, has been successfully fabricated on various substrates. This work will mainly review the syntheses and the corresponding prope√rties o√f silicene and√ silice√ne–graphene layered structures on Ir(111) substrates. For silicene on Ir(111), the buckled(3 ×3) silicene/(7 ×7)Ir(111) configuration and its electronic structure are fully discussed. For silicene–graphene layered structures, silicene layer can be constructed underneath graphene layer by an intercalation method. These results indicate the possibility of integrating silicene with graphene and may link up with potential applications in nanoelectronics and related areas. 展开更多
关键词 SILICENE graphene epitaxial growth scanning tunneling microscopy
下载PDF
Ultrafast growth of wafer-scale fold-free bilayer graphene
3
作者 Jilin Tang Yuechen Wang +17 位作者 Yuwei Ma Xiaoyin Gao Xin Gao Ning Li Yani Wang Shishu Zhang Liming Zheng Bing Deng Rui Yan Yisen Cao Ronghua Zhang Lianming Tong Jin Zhang Peng Gao Zhongfan Liu Xiaoding Wei Hongtao Liu Hailin Peng 《Nano Research》 SCIE EI CSCD 2023年第7期10684-10689,共6页
Bilayer graphene provides a versatile platform for exploring a variety of intriguing phenomena and shows much promise for applications in electronics,optoelectronics,etc.Controlled growth of large-area bilayer graphen... Bilayer graphene provides a versatile platform for exploring a variety of intriguing phenomena and shows much promise for applications in electronics,optoelectronics,etc.Controlled growth of large-area bilayer graphene is therefore highly desired yet still suffers from a slow growth rate and poor layer uniformity.Meanwhile,graphene wrinkles,including folds and ripples,form during cooling due to the thermal contraction mismatch between graphene and the metal substrates,and have been far from suppressed or eliminated,especially in bilayer graphene,which would greatly degrade the extraordinary properties of graphene.Here we report the ultrafast growth of wafer-scale fold-free bilayer graphene by chemical vapor deposition.Through well-tuning the alloy thickness and strain regulation of the single-crystal CuNi(111)/sapphire,the full coverage of a 2-inch fold-free bilayer graphene wafer via mainly isothermal segregation has been achieved as fast as 30 s.The tensile-strained CuNi(111)film reduces the thermal contraction mismatch and suppresses the formation of graphene folds during cooling,which is directly observed through in situ optical microscopy.The ultraflat bilayer graphene exhibits wafer-scale uniformity in electrical performance and enhanced mechanical property comparable to the exfoliated ones.Our results offer a promising route for largescale production of bilayer graphene and enable its various applications. 展开更多
关键词 bilayer graphene graphene wrinkles ultrafast growth in situ optical microscopy single crystal wafer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部