In-situ growing carbon nanotubes (CNTs) directly on carbon fibers (CFs) always lead to a degraded tensile strength of CFs and then a poor fiber-dominated mechanical property of carbon/carbon composites (C/ Cs). ...In-situ growing carbon nanotubes (CNTs) directly on carbon fibers (CFs) always lead to a degraded tensile strength of CFs and then a poor fiber-dominated mechanical property of carbon/carbon composites (C/ Cs). To solve this issue, here, a novel carbon fiber-based multiscale reinforcement is reported. To synthesize it, carbon fibers (CFs) have been first grafted by graphene oxide (GO), and then carbon nanotubes (CNTs) have been in-situ grown on GO-grafted CFs by catalytic chemical vapor deposition. Characterizations on this novel reinforcement show that GO grafting cannot only nondestructively improve the surface chemical activity of CFs but also protect CFs against the high-temperature corrosion of metal catalyst during CNT growth, which maintains their tensile properties. Tensile property tests for unidirectional C/Cs with different preforms show that this novel reinforcement can endow C/C with improved tensile properties, 32% and 87% higher than that of pure C/C and C/C only doped with in-situ grown CNTs. This work would open up a possibility to fabricate multiscale C/Cs with excellent global performance.展开更多
Carbon fibers (CF) were surface treated with air-oxidation and rare earths (RE), respectively. The effect of RE surface treatment on tensile strength and tribological properties of CF reinforced polytetrafluoroeth...Carbon fibers (CF) were surface treated with air-oxidation and rare earths (RE), respectively. The effect of RE surface treatment on tensile strength and tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites was invest/gated. Experimental results revealed that RE was superior to air ox/dation in improving the tensile strength, elongation, and the tensile modulus of CF reinforced PTFE (CF/PTFE) composite. Compared to the untreated and air-oxidated CF/PTFE composite, the RE treated composite had the lowest friction coefficient and specific wear rate under a given applied load and reciprocating sliding frequency. The RE treatment effectively improved the interfacial adhesion between CF and PTFE. With strong interfacial coupling, the carbon fibers carried most of the load, and direct contact and adhesion between PTFE and the counterpart were reduced, accordingly the friction and wear properties of the composite were improved.展开更多
Carbon fiber(C_(f))reinforced pyrolytic carbon(PyC)composites simultaneously possessing robust mechanical strength,excellent friction performances and outstanding anti-ablation properties are demanded for advanced aer...Carbon fiber(C_(f))reinforced pyrolytic carbon(PyC)composites simultaneously possessing robust mechanical strength,excellent friction performances and outstanding anti-ablation properties are demanded for advanced aerospace applications.Efficient architecture design and optimization of composites are promi-nent yet remain high challenging for realizing the above requirements.Herein,binary reinforcements of networked silicon nitride nanowires(Si_(3)N_(4) nws)and interconnected graphene(GE)have been successfully constructed into C f/PyC by precursor impregnation-pyrolysis and chemical vapor deposition.Notably,net-worked Si_(3)N_(4) nws are uniformly distributed among the carbon fibers,while interconnected GE is firmly rooted on the surface of both networked Si_(3)N_(4) nws and carbon fibers.In the networked Si_(3)N_(4) nws and interconnected GE reinforced C_(f)/PyC,networked Si_(3)N_(4) nws significantly boost the cohesion strength of PyC,while GE markedly improves the interface bonding of both Si_(3)N_(4) nws/PyC and fiber/PyC.Benefiting from the synergistic reinforcement effect of networked Si_(3)N_(4) nws and interconnected GE,the C_(f)/PyC have a prominent enhancement in mechanical(shear and compressive strengths increased by 119.9% and 52.84%,respectively)and friction(friction coefficient and wear rate reduced by 25.40% and 60.10%,respectively)as well as anti-ablation(mass ablation rate and linear ablation rate decreased by 71.25% and 63.01%,respectively).This present strategy for networked Si_(3)N_(4) nws and interconnected GE reinforced C_(f)/PyC provides a dominant route to produce mechanically robust,frictionally resisting and ablatively resistant materials for use in advanced aerospace applications.展开更多
Geopolymers are an important class of materials with potential applications because of their heat resistance,flame resistance,environmental friendliness,and possibilities of being transformed into ceramic matrix compo...Geopolymers are an important class of materials with potential applications because of their heat resistance,flame resistance,environmental friendliness,and possibilities of being transformed into ceramic matrix composites at low cost.However,the low mechanical properties as well as the intrinsic brittleness limit their technological implementations,and it is necessary to enhance the mechanical properties of geopolymers by adopting various kinds of reinforcements.In this work,therefore,two⁃dimensional continuous carbon fiber(Cf)reinforced phosphate⁃based geopolymer composites(Cf/geopolymer)were prepared through ultrasonic⁃assisted impregnation method.Effects of acetone treatment and high⁃temperature treatment on the properties of Cf/geopolymer composites were studied by X⁃ray photoelectron spectroscopy(XPS),X⁃ray diffraction(XRD),and scanning electron microscopy(SEM).Results of the study proved that acetone treatment plays a key role in ameliorating the interfacial interaction between Cf and phosphate matrix,which can thus enhance the mechanical properties of Cf/geopolymer composites.The Cf/geopolymer composites prepared by acetone⁃treated Cf had a flexural strength of 156.1 MPa and an elastic modulus of 39.7 GPa in Y direction.Moreover,an additional Sol⁃SiO2 re⁃impregnation treatment could further enhance the mechanical properties of the acetone⁃treated Cf/geopolymer composites by repairing the cracks and filling the pores.The results in this paper not only provide insights into the surface modification of Cf,but also report a facile and low⁃cost preparation route for Cf/geopolymer composites with potential applications in aerospace and defense technology.展开更多
Interconnected Ni(OH)_(2)nanoflakes and polyether amine(PEA)were deposited on carbon fiber tows via a facial and effective process of chemical bath deposition and dip coating.Based on this,a win–win benefit of simult...Interconnected Ni(OH)_(2)nanoflakes and polyether amine(PEA)were deposited on carbon fiber tows via a facial and effective process of chemical bath deposition and dip coating.Based on this,a win–win benefit of simultaneously improvements in interfacial shear strength(IFSS)of carbon fiber/epoxy composites and the electrochemical activity has been achieved.Compared with CF and CF-Ni(OH)_(2)composites,the IFSS of CF-Ni(OH)_(2)-PEA/epoxy composite respectively increased 7.9%and 45.4%,which was put down to the covalent bonding of Ni(OH)_(2)-PEA coating with fiber and epoxy matrix,as well as the effective stress transfer by the uniform honeycomb structure of Ni(OH)_(2).In aqueous KOH electrolyte,the CF-Ni(OH)_(2)-PEA electrode presented the maximum specific capacitance of 689.98 F·g^(-1)at 5 m V·s^(-1),572.28 F·g^(-1)at a current density of 0.5 A·g^(-1)due to the strong adhesion of carbon fiber with Ni(OH)_(2)by PEA,the reservation of the threedimensional hollow honeycomb structure of Ni(OH)_(2)for easy ion-transport and–NH_(2)functional groups from PEA for providing more active sites.The excellent performance of CF-Ni(OH)_(2)-PEA reinforcement demonstrates its promising potential for application in high performance composites with integrated structure and function,which shows great advantages in various fields of aerospace,energy,electronics,automobile,civil engineering,sports,etc.展开更多
Short carbon fiber reinforced AZ91D alloy (Csf/AZ91D) was fabricated by the infiltration-extrusion method. The short carbon fiber preform was infiltrated with melted AZ91D alloy under the assistant of gas pressure. Th...Short carbon fiber reinforced AZ91D alloy (Csf/AZ91D) was fabricated by the infiltration-extrusion method. The short carbon fiber preform was infiltrated with melted AZ91D alloy under the assistant of gas pressure. The extrusion processing was applied following the infiltration processing directly. The tensile property and microstructure of the Csf/AZ91D and that of the die-casting and extruded AZ91D alloy was compared. The results show that the short carbon fiber reinforced AZ91D alloy present excellent tensile property. The tensile strength and modulus of elasticity of Csf/AZ91D is about 50% and 18% higher than that of cast AZ91D alloy, respectively. The elongation to fracture of Csf/AZ91D is about 50% lower than that of AZ91D alloy.展开更多
基金supported by the National Natural Science Foundation of China (Nos.51432008,51502242,U1435202,and 51202194)the Research Fund for the Doctoral Program of Higher Education of China (No.20126102110013)the Key Grant Project of Chinese Ministry of Education (No.313047)
文摘In-situ growing carbon nanotubes (CNTs) directly on carbon fibers (CFs) always lead to a degraded tensile strength of CFs and then a poor fiber-dominated mechanical property of carbon/carbon composites (C/ Cs). To solve this issue, here, a novel carbon fiber-based multiscale reinforcement is reported. To synthesize it, carbon fibers (CFs) have been first grafted by graphene oxide (GO), and then carbon nanotubes (CNTs) have been in-situ grown on GO-grafted CFs by catalytic chemical vapor deposition. Characterizations on this novel reinforcement show that GO grafting cannot only nondestructively improve the surface chemical activity of CFs but also protect CFs against the high-temperature corrosion of metal catalyst during CNT growth, which maintains their tensile properties. Tensile property tests for unidirectional C/Cs with different preforms show that this novel reinforcement can endow C/C with improved tensile properties, 32% and 87% higher than that of pure C/C and C/C only doped with in-situ grown CNTs. This work would open up a possibility to fabricate multiscale C/Cs with excellent global performance.
基金Project supported by the National Natural Science Foundation of China (50275093)
文摘Carbon fibers (CF) were surface treated with air-oxidation and rare earths (RE), respectively. The effect of RE surface treatment on tensile strength and tribological properties of CF reinforced polytetrafluoroethylene (PTFE) composites was invest/gated. Experimental results revealed that RE was superior to air ox/dation in improving the tensile strength, elongation, and the tensile modulus of CF reinforced PTFE (CF/PTFE) composite. Compared to the untreated and air-oxidated CF/PTFE composite, the RE treated composite had the lowest friction coefficient and specific wear rate under a given applied load and reciprocating sliding frequency. The RE treatment effectively improved the interfacial adhesion between CF and PTFE. With strong interfacial coupling, the carbon fibers carried most of the load, and direct contact and adhesion between PTFE and the counterpart were reduced, accordingly the friction and wear properties of the composite were improved.
基金financially supported by the National Natural Science Foundation of China(No.51872232)the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),China(No.136-QP-2015)+4 种基金the“111”project of China(No.B08040)the National Training Program of Innovation and Entrepreneurship for Undergraduates(No.S202010699336)the Joint Funds of the National Natural Science Foundation of China(No.U21B2067)the Key Scientific and Technological Innovation Research Team of Shaanxi Province(No.2022TD-31)the Key R&D Program of Shaanxi Province(No.2021ZDLGY14-04).
文摘Carbon fiber(C_(f))reinforced pyrolytic carbon(PyC)composites simultaneously possessing robust mechanical strength,excellent friction performances and outstanding anti-ablation properties are demanded for advanced aerospace applications.Efficient architecture design and optimization of composites are promi-nent yet remain high challenging for realizing the above requirements.Herein,binary reinforcements of networked silicon nitride nanowires(Si_(3)N_(4) nws)and interconnected graphene(GE)have been successfully constructed into C f/PyC by precursor impregnation-pyrolysis and chemical vapor deposition.Notably,net-worked Si_(3)N_(4) nws are uniformly distributed among the carbon fibers,while interconnected GE is firmly rooted on the surface of both networked Si_(3)N_(4) nws and carbon fibers.In the networked Si_(3)N_(4) nws and interconnected GE reinforced C_(f)/PyC,networked Si_(3)N_(4) nws significantly boost the cohesion strength of PyC,while GE markedly improves the interface bonding of both Si_(3)N_(4) nws/PyC and fiber/PyC.Benefiting from the synergistic reinforcement effect of networked Si_(3)N_(4) nws and interconnected GE,the C_(f)/PyC have a prominent enhancement in mechanical(shear and compressive strengths increased by 119.9% and 52.84%,respectively)and friction(friction coefficient and wear rate reduced by 25.40% and 60.10%,respectively)as well as anti-ablation(mass ablation rate and linear ablation rate decreased by 71.25% and 63.01%,respectively).This present strategy for networked Si_(3)N_(4) nws and interconnected GE reinforced C_(f)/PyC provides a dominant route to produce mechanically robust,frictionally resisting and ablatively resistant materials for use in advanced aerospace applications.
基金National Natural Science Foundation of China(Grant Nos.51872063,51832002 and 51621091)the Natural Science Foundation of Heilongjiang Province(Grant No.YQ2019E002)the National Key Research and Development Program of China(Grant No.2017YFB0703200)。
文摘Geopolymers are an important class of materials with potential applications because of their heat resistance,flame resistance,environmental friendliness,and possibilities of being transformed into ceramic matrix composites at low cost.However,the low mechanical properties as well as the intrinsic brittleness limit their technological implementations,and it is necessary to enhance the mechanical properties of geopolymers by adopting various kinds of reinforcements.In this work,therefore,two⁃dimensional continuous carbon fiber(Cf)reinforced phosphate⁃based geopolymer composites(Cf/geopolymer)were prepared through ultrasonic⁃assisted impregnation method.Effects of acetone treatment and high⁃temperature treatment on the properties of Cf/geopolymer composites were studied by X⁃ray photoelectron spectroscopy(XPS),X⁃ray diffraction(XRD),and scanning electron microscopy(SEM).Results of the study proved that acetone treatment plays a key role in ameliorating the interfacial interaction between Cf and phosphate matrix,which can thus enhance the mechanical properties of Cf/geopolymer composites.The Cf/geopolymer composites prepared by acetone⁃treated Cf had a flexural strength of 156.1 MPa and an elastic modulus of 39.7 GPa in Y direction.Moreover,an additional Sol⁃SiO2 re⁃impregnation treatment could further enhance the mechanical properties of the acetone⁃treated Cf/geopolymer composites by repairing the cracks and filling the pores.The results in this paper not only provide insights into the surface modification of Cf,but also report a facile and low⁃cost preparation route for Cf/geopolymer composites with potential applications in aerospace and defense technology.
基金supported by the National Natural Science Foundation of China(No.51603169)Natural Science Basic Research Plan in Shaanxi Province of China(No.2017JQ5050)Natural Science Foundation of Shaanxi University of Science&Technology(No.2016QNBJ-12)。
文摘Interconnected Ni(OH)_(2)nanoflakes and polyether amine(PEA)were deposited on carbon fiber tows via a facial and effective process of chemical bath deposition and dip coating.Based on this,a win–win benefit of simultaneously improvements in interfacial shear strength(IFSS)of carbon fiber/epoxy composites and the electrochemical activity has been achieved.Compared with CF and CF-Ni(OH)_(2)composites,the IFSS of CF-Ni(OH)_(2)-PEA/epoxy composite respectively increased 7.9%and 45.4%,which was put down to the covalent bonding of Ni(OH)_(2)-PEA coating with fiber and epoxy matrix,as well as the effective stress transfer by the uniform honeycomb structure of Ni(OH)_(2).In aqueous KOH electrolyte,the CF-Ni(OH)_(2)-PEA electrode presented the maximum specific capacitance of 689.98 F·g^(-1)at 5 m V·s^(-1),572.28 F·g^(-1)at a current density of 0.5 A·g^(-1)due to the strong adhesion of carbon fiber with Ni(OH)_(2)by PEA,the reservation of the threedimensional hollow honeycomb structure of Ni(OH)_(2)for easy ion-transport and–NH_(2)functional groups from PEA for providing more active sites.The excellent performance of CF-Ni(OH)_(2)-PEA reinforcement demonstrates its promising potential for application in high performance composites with integrated structure and function,which shows great advantages in various fields of aerospace,energy,electronics,automobile,civil engineering,sports,etc.
基金Supported by the National Natural Science Foundation of China (50575185)the Foundation of Aeronautic Science of China (05G53048)the Natural Science Foundation of Shaanxi Province (2005E23)
文摘Short carbon fiber reinforced AZ91D alloy (Csf/AZ91D) was fabricated by the infiltration-extrusion method. The short carbon fiber preform was infiltrated with melted AZ91D alloy under the assistant of gas pressure. The extrusion processing was applied following the infiltration processing directly. The tensile property and microstructure of the Csf/AZ91D and that of the die-casting and extruded AZ91D alloy was compared. The results show that the short carbon fiber reinforced AZ91D alloy present excellent tensile property. The tensile strength and modulus of elasticity of Csf/AZ91D is about 50% and 18% higher than that of cast AZ91D alloy, respectively. The elongation to fracture of Csf/AZ91D is about 50% lower than that of AZ91D alloy.