Flexible thermoelectrics provide a distinct solution for developing sustainable and portable power supplies.Inorganic/organic material compositing is an effective strategy to induce a significant enhancement of thermo...Flexible thermoelectrics provide a distinct solution for developing sustainable and portable power supplies.Inorganic/organic material compositing is an effective strategy to induce a significant enhancement of thermoelectric(TE)performance.However,the poor electrical performance of inorganic/organic material is attributed to the poor carrier transport between organic/inorganic interfaces induced by the low contribution of composited inorganic materials.Herein,we prepared a high room temperature figure-of-merit(ZT)value of~0.19 and high bending resistance(surviving 1200 bending cycles at the bending radius of 16.5 mm)of p-type poly(3,4-ethylenedioxy thiophene):poly(4-styrenesulfonate)(PEDOT:PSS)/Bi_(0.5)Sb_(1.5)Te_(3)free-standing composite film via a facile vacuum-as sis ted filtration approach.Compositing Bi_(0.5)Sb_(1.5)Te_(3)nano-spherical particles into PEDOT:PSS results in the optimized interfacial contact and carrier concentration,leading to a high Seebeck coefficient of~43.79μV·K^(-1).Accordingly,a high-power factor of~1.52μW·cm^(-1)·K^(-2)is achieved in the PEDOT:PSS/Bi_(0.5)Sb_(1.5)Te_(3)composite film at room temperature.In addition,the PEDOT:PSS/Bi_(0.5)Sb_(1.5)Te_(3)interfaces with phase boundaries,nanograins and point defects could further decrease the thermal conductivity to~0.20 W·m^(-1)K^(-1),leading to a high ZT value.Furthermore,a 6-leg freestanding film device was assembled,which provided an output power of 44.94 nW.This study demonstrates that free-standing organic/inorganic composite films are effective power sources for wearable electronic products.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.12204355 and 52272210)the Natural Science Foundations of Shandong Province(Nos.ZR2023ME001 and ZR2022QA018)+1 种基金China Postdoctoral Science Foundation(No.2023M732609)the Doctoral Research Initiation Fund of Weifang University(Nos.2023BS01 and 2023BS06)。
文摘Flexible thermoelectrics provide a distinct solution for developing sustainable and portable power supplies.Inorganic/organic material compositing is an effective strategy to induce a significant enhancement of thermoelectric(TE)performance.However,the poor electrical performance of inorganic/organic material is attributed to the poor carrier transport between organic/inorganic interfaces induced by the low contribution of composited inorganic materials.Herein,we prepared a high room temperature figure-of-merit(ZT)value of~0.19 and high bending resistance(surviving 1200 bending cycles at the bending radius of 16.5 mm)of p-type poly(3,4-ethylenedioxy thiophene):poly(4-styrenesulfonate)(PEDOT:PSS)/Bi_(0.5)Sb_(1.5)Te_(3)free-standing composite film via a facile vacuum-as sis ted filtration approach.Compositing Bi_(0.5)Sb_(1.5)Te_(3)nano-spherical particles into PEDOT:PSS results in the optimized interfacial contact and carrier concentration,leading to a high Seebeck coefficient of~43.79μV·K^(-1).Accordingly,a high-power factor of~1.52μW·cm^(-1)·K^(-2)is achieved in the PEDOT:PSS/Bi_(0.5)Sb_(1.5)Te_(3)composite film at room temperature.In addition,the PEDOT:PSS/Bi_(0.5)Sb_(1.5)Te_(3)interfaces with phase boundaries,nanograins and point defects could further decrease the thermal conductivity to~0.20 W·m^(-1)K^(-1),leading to a high ZT value.Furthermore,a 6-leg freestanding film device was assembled,which provided an output power of 44.94 nW.This study demonstrates that free-standing organic/inorganic composite films are effective power sources for wearable electronic products.