期刊文献+
共找到213篇文章
< 1 2 11 >
每页显示 20 50 100
Greatly enhanced corrosion/wear resistances of epoxy coating for Mg alloy through a synergistic effect between functionalized graphene and insulated blocking layer
1
作者 Z.Y.Xue X.J.Li +3 位作者 J.H.Chu M.M.Li D.N.Zou L.B.Tong 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期332-344,共13页
The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification proc... The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification process,which cannot provide sufficient protection.In the current study,we design a double-layer epoxy composite coating on Mg alloy with enhanced anti-corrosion/wear properties,via the spin-assisted assembly technique.The outer layer is functionalized graphene(FG)in waterborne epoxy resin(WEP)and the inner layer is Ce-based conversion(Ce)film.The FG sheets can be homogeneously dispersed within the epoxy matrix to fill the intrinsic defects and improve the barrier capability.The Ce film connects the outer layer with the substrate,showing the transition effect.The corrosion rate of Ce/WEP/FG composite coating is 2131 times lower than that of bare Mg alloy,and the wear rate is decreased by~90%.The improved corrosion resistance is attributed to the labyrinth effect(hindering the penetration of corrosive medium)and the obstruction of galvanic coupling behavior.The synergistic effect derived from the FG sheet and blocking layer exhibits great potential in realizing the improvement of multi-functional integration,which will open up a new avenue for the development of novel composite protection coatings of Mg alloys. 展开更多
关键词 Mg alloy Functionalized graphene Epoxy coating Corrosion/wear resistance Blocking layer
下载PDF
Graphene-calcium carbonate coating to improve the degradation resistance and mechanical integrity of a biodegradable implant
2
作者 Lokesh Choudhary Parama Chakraborty Banerjee +5 位作者 R.K.Singh Raman Derrek E.Lobo Christopher D.Easton Mainak Majumder Frank Witte Jörg F.Löffler 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期394-404,共11页
Biodegradable implants are critical for regenerative orthopaedic procedures,but they may suffer from too fast corrosion in human-body environment.This necessitates the synthesis of a suitable coating that may improve ... Biodegradable implants are critical for regenerative orthopaedic procedures,but they may suffer from too fast corrosion in human-body environment.This necessitates the synthesis of a suitable coating that may improve the corrosion resistance of these implants without compromising their mechanical integrity.In this study,an AZ91 magnesium alloy,as a representative for a biodegradable Mg implant material,was modified with a thin reduced graphene oxide(RGO)-calcium carbonate(CaCO_(3))composite coating.Detailed analytical and in-vitro electrochemical characterization reveals that this coating significantly improves the corrosion resistance and mechanical integrity,and thus has the potential to greatly extend the related application field. 展开更多
关键词 graphene coating Biodegradable implant HYDROXYAPATITE Corrosion Magnesium alloy
下载PDF
Effect of graphene nanoplatelets(GNPs)addition on strength and ductility of magnesium-titanium alloys 被引量:10
3
作者 Muhammad Rashad Fusheng Pan +6 位作者 Aitao Tang Yun Lu Muhammad Asif Shahid Hussain Jia She Jun Gou Jianjun Mao 《Journal of Magnesium and Alloys》 SCIE EI CAS 2013年第3期242-248,共7页
Effect of graphene nanoplatelets(GNPs)addition on mechanical properties of magnesium–10wt%Titanium(Mg–10Ti)alloy is investigated in current work.The Mg-(10Ti+0.18GNPs)composite was synthesized using the semi powder ... Effect of graphene nanoplatelets(GNPs)addition on mechanical properties of magnesium–10wt%Titanium(Mg–10Ti)alloy is investigated in current work.The Mg-(10Ti+0.18GNPs)composite was synthesized using the semi powder metallurgy method followed by hot extrusion.Microstructural characterization results revealed the uniform distribution of reinforcement(Ti+GNPs)particles in the matrix,therefore(Ti+GNPs)particles act as an effective reinforcing filler to prevent the deformation.Room temperature tensile results showed that the addition of Ti+GNPs to monolithic Mg lead to increase in 0.2%yield strength(0.2%YS),ultimate tensile strength(UTS),and failure strain.Scanning Electron Microscopy(SEM),Energy-Dispersive X-ray Spectroscopy(EDS)and X-Ray Diffraction(XRD)were used to investigate the surface morphology,elemental dispersion and phase analysis,respectively. 展开更多
关键词 MAGNESIUM Titanium graphene nanoplatelets alloy Composite materials Powder metallurgy Mechanical properties
下载PDF
Reduced graphene oxide supported PdNi alloy nanocrystals for the oxygen reduction and methanol oxidation reactions 被引量:2
4
作者 Hui-Min Liu Shu-He Han +2 位作者 Ying-Ying Zhu Pei Chen Yu Chen 《Green Energy & Environment》 SCIE 2018年第4期375-383,共9页
The research on electrocatalysts with relatively lower price than Pt and excellent electrocatalytic performance for the cathode oxygen reduction reaction(ORR) and anode methanol oxidation reaction(MOR) is vital for th... The research on electrocatalysts with relatively lower price than Pt and excellent electrocatalytic performance for the cathode oxygen reduction reaction(ORR) and anode methanol oxidation reaction(MOR) is vital for the development of direct methanol fuel cells(DMFCs). In this work, we develop a cyanogel-reduction method to synthesize reduced graphene oxide(rGO) supported highly dispersed PdNi alloy nanocrystals(PdNi/rGO) with high alloying degree and tunable Pd/Ni ratio. The large specific surface area and the d-band center downshift of Pd result in excellent activity of Pd4 Ni1/rGO nanohybrids for the ORR. The modification of Pd electronic structure can facilitate the adsorption of CH3 OH on Pd surface and the highly oxophilic property of Ni can eliminate/mitigate the COadsintermediates poisoning, which make PdNi/r GO nanohybrids possess superior MOR activity. In addition, rGO improve the stability of PdNi alloy nanocrystals for the ORR and MOR. Due to high activity and stability for the ORR and MOR, PdNi/rGO nanohybrids are promising to be an available bifunctional electrocatalyst in DMFCs. 展开更多
关键词 Cyanogel REDUCTION Reduced graphene OXIDE PdNi alloy NANOCRYSTALS Oxygen REDUCTION REACTION METHANOL oxidation REACTION
下载PDF
Mechanical properties of graphene nanoplatelets reinforced 7075 aluminum alloy composite fabricated by spark plasma sintering 被引量:2
5
作者 Hui-min Xia Lan Zhang +4 位作者 Yong-chao Zhu Na Li Yu-qi Sun Ji-dong Zhang Hui-zhong Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第9期1295-1300,共6页
A 0.3wt%graphene nanoplatelets(GNPs)reinforced 7075 aluminum alloy matrix(7075 Al)composite was fabricated by spark plasma sintering and its strength and wear resistance were investigated.The microstructures of the in... A 0.3wt%graphene nanoplatelets(GNPs)reinforced 7075 aluminum alloy matrix(7075 Al)composite was fabricated by spark plasma sintering and its strength and wear resistance were investigated.The microstructures of the internal structure,the friction surface,and the wear debris were characterized by scanning electron microscopy,X-ray diffraction,and Raman spectroscopy.Compared with the original 7075 aluminum alloy,the hardness and elastic modulus of the 7075 Al/GNPs composite were found to have increased by 29%and 36%,respectively.The results of tribological experiments indicated that the composite also exhibited a lower wear rate than the original 7075 aluminum alloy. 展开更多
关键词 7075 aluminum alloy graphene nanoplatelets spark plasma sintering STRENGTH wear resistance
下载PDF
Tribological behaviors of graphene oxide partly substituted with nano-SiO_(2) as lubricant additives in water for magnesium alloy/steel interfaces 被引量:1
6
作者 Hongmei Xie Jiahong Dai Dan Zhou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第7期1425-1434,共10页
Although graphene oxide(GO)has emerged as an excellent lubricant additive in water,there remain great challenges in their practical application due to high production costs.By taking into account the low cost and also... Although graphene oxide(GO)has emerged as an excellent lubricant additive in water,there remain great challenges in their practical application due to high production costs.By taking into account the low cost and also its excellent tribological properties,it is likely that nano-SiO_(2)can be used as a lubricant additive to partially replace GO.Hence,this paper aims to explore the tribological properties of nano-SiO_(2)incorporated in GO nanofluids for partial GO replacement by investigating the friction coefficient and wear volume of the prepared SiO_(2)/GO hybrid nanofluids for magnesium alloy/steel sliding pairs.The experiments reveal that the SiO_(2)/GO hybrids retain low friction coefficients as compared to individual GO or SiO_(2)at all test conditions in this study.However,as for the bearing capacity test,all samples can provide a low wear volume under the loads of 1 and 3 N.With the increase of the normal load,there is considerable differences in the anti-wear behavior.Compared with that of individual GO nanofluids,the wear volume of the GO/SiO_(2)(mass ratio of 0.3:0.2)hybrid nanofluids was reduced by50.5%at 5 N and by 49.2%at 8 N.Furthermore,the wear volume of the GO/SiO_(2)(mass ratio of 0.3:0.2)hybrid nanofluids was reduced by46.3%under the rigorous conditions,as compared to individual GO nanofluids.The findings provide new insights into developing carbon nanomaterial-based hybrid nanofluids for magnesium alloy formation. 展开更多
关键词 magnesium alloy graphene oxide and nano-silicon dioxide water-based lubricant additive tribological characteristics
下载PDF
In situ growth of N-doped carbon coated CoNi alloy with graphene decoration for enhanced HER performance
7
作者 Linlin Chen Saisai Yang +3 位作者 Kun Qian Wei Wei Cheng Sun Jimin Xie 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第2期129-135,共7页
Non-noble metal-based catalysts,especially stable ones,have gained increasing attentions in the field of electronically catalytic hydrogen evolution reaction(HER).In this work,an N-doped carbon confined Co–Ni alloy w... Non-noble metal-based catalysts,especially stable ones,have gained increasing attentions in the field of electronically catalytic hydrogen evolution reaction(HER).In this work,an N-doped carbon confined Co–Ni alloy with reduced graphene oxide(rGO) decoration(CoNi@N-C/rGO) was fabricated for HER.The prepared catalyst exhibited excellent HER activity in an acidic electrolyte(Tafel slope of ~133.7 m V).The results showed that the enhanced HER performance of the nanostructures is attributed to the chemical and electronic synergic effect between the confined Co–Ni alloy and r GO.Stability tests,realized via longterm potential cycles and extended electrolysis,provided the confirmation of the exceptional durability of the catalyst,which originated from the confining effect of the N-doped carbon shell.This versatile method provides a strategy for designing stable non-precious metal electrocatalysts confined by carboncoating. 展开更多
关键词 Metal alloys N-DOPED CARBON Reduced graphene OXIDES Hydrogen evolution reaction
下载PDF
Nd–Mg–Ni alloy electrodes modified by reduced graphene oxide with improved electrochemical kinetics
8
作者 Yuan Li Li-na Cheng +3 位作者 Wen-kang Miao Chun-xiao Wang De-zhi Kuang Shu-min Han 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第3期391-400,共10页
To improve the electrochemical kinetics of Nd–Mg–Ni alloy electrodes, the alloy surface was modified with highly conductive reduced graphene oxide(rGO) via a chemical reduction process. Results indicated that rGO sh... To improve the electrochemical kinetics of Nd–Mg–Ni alloy electrodes, the alloy surface was modified with highly conductive reduced graphene oxide(rGO) via a chemical reduction process. Results indicated that rGO sheets uniformly coated on the alloy surface, yielding a threedimensional network layer. The coated surfaces contained numerous hydrophilic functional groups, leading to better wettability of the alloy in aqueous alkaline media. This, in turn, increased the concentration of electro-active species at the interface between the electrode and the electrolyte, improving the electrochemical kinetics and the rate discharge of the electrodes. The high rate dischargeability at 1500 mA·g^(–1) increased from 53.2% to 83.9% after modification. In addition, the modification layer remained stable and introduced a dense metal oxide layer to the alloy surface after a long cycling process. Therefore, the protective layer prevented the discharge capacity from quickly decreasing and improved cycling stability. 展开更多
关键词 hydrogen storage alloys surface modification graphene oxide electrochemical properties KINETICS
下载PDF
A tightly bonded reduced graphene oxide coating on magnesium alloy with photothermal effect for tumor therapy
9
作者 Lidan Liu Feng Peng +3 位作者 Dongdong Zhang Mei Li Jian Huang Xuanyong Liu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第11期3031-3040,共10页
Photothermal therapy becomes a hotspot in the treatment of bone tumors. Magnesium and its alloys are regarded as potential bone implants for their favorable mechanical property and biodegradable in vivo. However, ther... Photothermal therapy becomes a hotspot in the treatment of bone tumors. Magnesium and its alloys are regarded as potential bone implants for their favorable mechanical property and biodegradable in vivo. However, there is few research devoted to fabricating a photothermal coating on Mg alloy. In the present study, reduced graphene oxide coating with a strong photothermal effect was prepared on the surface of AZ31via two steps. Firstly, graphene oxide coating was deposited on the surface via electrophoresis deposited(GO#), followed by a reduction process of the graphene oxide coating in ultrapure water(rGO#). GO# and rGO# coatings were characterized by SEM, Raman, XRD, FTIR,and XPS. The results revealed that, compared with GO# coating, the content of oxygen-containing(C-O/C-O-C, C=O, O-C=O) groups on rGO# coating was significantly decreased. rGO# coating was found tightly adhered to AZ31 substrate. According to the first-principles calculations, the well-bonded heterostructure between MgO and rGO is the main reason for the strong bonding force. Moreover, the prepared rGO# coating showed a superior photothermal effect, which brings a new strategy to the treatment of bone tumors with Mg-based implants. 展开更多
关键词 Magnesium alloy Reduced graphene oxide Photothermal effect
下载PDF
Novel Corrosion Inhibitors for Carbon Steel Alloy in Acidic Medium of 1N HCl Synthesized from Graphene Oxide
10
作者 Hawraa H. Radey Moayed N. Khalaf Hadi Z. Al-Sawaad 《Open Journal of Organic Polymer Materials》 2018年第4期53-79,共27页
In this study, two nano-derivatives from nano-Graphene oxide (GO) were synthesized. Regarding to GON and GOS by reaction GO with 2-amino ethanol and 2-marcapto ethanol respectively, the GO, GON, GOS were characterized... In this study, two nano-derivatives from nano-Graphene oxide (GO) were synthesized. Regarding to GON and GOS by reaction GO with 2-amino ethanol and 2-marcapto ethanol respectively, the GO, GON, GOS were characterized by FTIR, XRD and FSEM. Evaluation prepared compound to inhibitors corrosion for Carbon steel in acidic media at (1 - 6 ppm) concentration and different temperature 298, 308, 318, 328 K. The electrochemical technique used Tafel plot to measure the efficiency of inhibitor. It was observed that the corrosion rate and charge transfer of the carbon steel for the inhibitor increase with increase of temperature and decrease with increase of the inhibitor concentration in the same temperature. The GON had inhibition efficiency reached 96.96% for the 6 ppm concentration at 298 K. 展开更多
关键词 graphene OXIDE Derivatives Corrosion INHIBITORS CARBON Steel alloy
下载PDF
Study on improvement of conductivity of Cu-Cr-Zr alloys 被引量:11
11
作者 LI Huaqing XIE Shuisheng WU Pengyue MI Xujun 《Rare Metals》 SCIE EI CAS CSCD 2007年第2期124-130,共7页
关键词 cu-cr-zr alloys electrical conductivity alloyING heat treatment plastic deformation
下载PDF
Enhancing alkaline water oxidation with NiFe alloy-encapsulated nitrogen-doped vertical graphene array
12
作者 Jue Nan Beirong Ye +7 位作者 Xun He Chen Li Wanli Zhang Qian Liu Luming Li Wei Chu Xuping Sun Yongqi Zhang 《Nano Research》 SCIE EI CSCD 2024年第6期4790-4796,共7页
Advancing efficient and affordable electrocatalysts to boost the oxygen evolution reaction(OER)is pivotal for sustainable green hydrogen production.Herein,we propose the fabrication of nickel-iron alloy nanoparticles-... Advancing efficient and affordable electrocatalysts to boost the oxygen evolution reaction(OER)is pivotal for sustainable green hydrogen production.Herein,we propose the fabrication of nickel-iron alloy nanoparticles-encapsulated on N-doped vertically aligned graphene array on carbon cloth(NiFe@NVG/CC)as a highly active three-dimensional(3D)catalyst electrode for OER.In 1 M KOH,such NiFe@NVG/CC demonstrates outstanding catalytic performance,necessitating merely overpotential of 245 mV for achieving a current density of 10 mA·cm^(−2),a remarkably low Tafel slope of 36.2 mV·dec^(−1).Furthermore,density functional theory calculations validate that the incorporate of N species into graphene can reinforce the electrocatalytic activity though reducing the reaction energy barrier during the conversion of*O to*OOH intermediates.The outstanding performance and structural benefits of NiFe@NVG/CC offer valuable insights for the development of innovative and efficient electrocatalysts for water oxidation. 展开更多
关键词 NiFe alloy N-doped vertical graphene array electrocatalyst oxygen evolution reaction density functional theory
原文传递
Microstructure and Properties of Cu-Cr-Zr Alloy after Rapidly Solidified Aging and Solid Solution Aging 被引量:14
13
作者 Ping LIU Juanhua SU +1 位作者 Qiming DONG Hejun LI 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第4期475-478,共4页
The structure and properties of Cu-Cr-Zr alloy were studied after rapidly solidified aging and solid solution aging.At the early stage of aging (500℃ for 15 rain), the hardness and the conductivity of the alloy rap... The structure and properties of Cu-Cr-Zr alloy were studied after rapidly solidified aging and solid solution aging.At the early stage of aging (500℃ for 15 rain), the hardness and the conductivity of the alloy rapidly solidified are 143 HV and 72% IACS, respectively. Under the same aging condition, the hardness and electrical conductivity of the alloy solid solution treated can reach 86 HV and 47% IACS, respectively. The microstructure was analyzed, and the grain size after rapid solidification is much smaller than that after solid solution treatment. By rapidly solidified aging the fine precipitates distribute inside the grains and along the grain boundary, while by solid solution aging there are large Cr particles along the grain boundary. 展开更多
关键词 cu-cr-zr alloy PROPERTIES Solid solution aging Rapidly solidified aging
下载PDF
Influence of Cerium and Yttrium on Cu-Cr-Zr Alloys 被引量:9
14
作者 李华清 谢水生 +3 位作者 米绪军 刘勇 吴朋越 程磊 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第z2期367-371,共5页
Testing results shows that alloying with Ce and Y improves the hardness and softens temperature of cold worked Cu-Cr-Zr alloys obviously, while the conductivity was fluctuant with the variation of RE content. Observat... Testing results shows that alloying with Ce and Y improves the hardness and softens temperature of cold worked Cu-Cr-Zr alloys obviously, while the conductivity was fluctuant with the variation of RE content. Observation and analysis indicate that micro-dosage RE elements helps to refine microstructure and morphology of Cu-Cr-Zr-RE alloys, suppress microstructure coarsening and improves homogeneous level of Cu-Cr-Zr alloys. Alloying with 0.01% Ce causes about 1% IACS increment of conductivity, and reduces about 2%~3.5% IACS conductivity after alloying with 0.03%~0.04% RE (Ce or Ce+Y) for Cu-Cr-Zr alloys. The microstructure of as-cast Cu-Cr-Zr alloy is refined after alloying with 0.01% Ce while the plasticity is improved slightly. Alloying with 0.01%~0.04% RE improves the softening temperature of deformed Cu-Cr-Zr alloys about 20~40 K; hardness is also improved about 20~35 HV. Test data indicate that alloying with Ce+Y raises softening temperature and hardness of Cu-Cr-Zr alloys more notably than alloying with pure Ce. 展开更多
关键词 cu-cr-zr alloys SOFTENING temperature HARDNESS CONDUCTIVITY rare earth elements
下载PDF
Prediction of Properties in Thermomechanically Treated Cu-Cr-Zr Alloy by an Artificial Neural Network 被引量:11
15
作者 JuanhuaSU QimingDONG +2 位作者 PingLIU HejunLI BuxiKANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第6期529-532,共4页
关键词 cu-cr-zr alloy Thermomechanical treatment Levenberg-Marquardt algorithm Artificial neural network
下载PDF
Phase and Microstructure Analysis of Cu-Cr-Zr Alloys 被引量:3
16
作者 Huaqing LI Shuisheng XIE +1 位作者 Xujun MI Pengyue WU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第6期795-800,共6页
Phases of Cu-(0.4%-2.0%) Cr-(0.05%-0.16%) Zr alloys were analyzed in both as cast and deformed state. Solute-rich clusters of Cr, which was supposed to form during aging treatment, were observed in as cast state; ... Phases of Cu-(0.4%-2.0%) Cr-(0.05%-0.16%) Zr alloys were analyzed in both as cast and deformed state. Solute-rich clusters of Cr, which was supposed to form during aging treatment, were observed in as cast state; along with the morphology character, corresponding preferential orientation of Cr phase in as cast state was also investigated. Precipitates were observed to distribute in the matrix with a bimodal distribution, viz. coarse precipitates with dimension larger than several hundred nanometers and fine precipitates with size of 2- 10 nm. Three types of intermetallics, the common compound of Cu51Zr14, correspondingly infrequent Cu5Zr and rare Cu5Zr3, were characterized in different samples. 展开更多
关键词 cu-cr-zr alloy Solute-rich cluster Intermetallic compound MICROSTRUCTURE
下载PDF
Establishing the knowledge repository of rapidly solidified aging Cu-Cr-Zr alloy on the artificial neural-network 被引量:3
17
作者 SUJuanhua DONGQiming +3 位作者 LIUPing LIHejun KANGBuxi TIANBaohong 《Rare Metals》 SCIE EI CAS CSCD 2004年第2期171-175,共5页
The non-linear relationship between parameters of rapidly solidified agingprocesses and mechancal and electrical properties of Cu-Cr-Zr alloy is available by using asupervised artificial neural network (ANN). A knowle... The non-linear relationship between parameters of rapidly solidified agingprocesses and mechancal and electrical properties of Cu-Cr-Zr alloy is available by using asupervised artificial neural network (ANN). A knowledge repository of rapidly solidified agingprocesses is established via sufficient data learning by the network. The predicted values of theneural network are in accordance with the tested data. So an effective measure for foreseeing andcontrolling the properties of the processing is provided. 展开更多
关键词 cu-cr-zr alloy knowledge repository artificial neural network rapidsolidifiation aging
下载PDF
Effect of deep cryogenic treatment on mechanical behavior of a Cu-Cr-Zr alloy for electrodes of spot welding 被引量:3
18
作者 WANG Xiaofeng SHAN Ping HU Shengsun WU Zhisheng WANG Xibao 《Rare Metals》 SCIE EI CAS CSCD 2005年第4期392-396,共5页
The effects of deep cryogenic treatment on mechanical behavior of a Cu-Cr-Zr alloy for electrodes of spot welding were investigated employing Brinell-hardness testing unit, abrasion examination machine, electronic alm... The effects of deep cryogenic treatment on mechanical behavior of a Cu-Cr-Zr alloy for electrodes of spot welding were investigated employing Brinell-hardness testing unit, abrasion examination machine, electronic almighty testing machine and X-ray stress analyzer. Tensile fracture surfaces of the alloy were characterized by scanning electronic microscope (SEM) with energy dispersive X-ray spectroscopy (EDS). The results showed that, after deep cryogenic treatment, σb and σ0.2 increased 23 MPa and 21 MPa respectively, the wear rate of the alloy exhibited the trend of decrease with the decreasing temperature and increasing time of deep cryogenic treatment, and the surface residual stress of the alloy was partially eliminated by deep cryogenic treatment. 展开更多
关键词 cu-cr-zr alloy deep cryogenic treatment mechanical properties spot welding electrode
下载PDF
Texture of deformed Cu-Cr-Zr alloys 被引量:2
19
作者 Huaqing Li Shuisheng Xie +2 位作者 Xujun Mi Pengyue Wu Yanfeng Li 《Journal of University of Science and Technology Beijing》 CSCD 2008年第4期434-439,共6页
The influences of plastic deformation, aging treatment, and alloying elements on the texture of Cu-Cr-Zr alloys were ex- plored. The texture component and intensity of Cu-Cr-Zr alloys under various working conditions ... The influences of plastic deformation, aging treatment, and alloying elements on the texture of Cu-Cr-Zr alloys were ex- plored. The texture component and intensity of Cu-Cr-Zr alloys under various working conditions after aging treatment were characterized using the orientation distributing function (ODF). The influence of Zr content on the texture of Cu-Cr-Zr alloys was also analyzed. The reduction pass and deformation level were primary factors influencing the texture. Rolling texture appeared in a rolled plate and the fibrous textures of {111} and {001} were detected after 80% deformation. Fibrous texture with a main constituent of {111} improved the tensile strength of the alloy wire. The texture contents of {110}〈331〉 and {110}〈112〉 were predominated, whereas, those of {113}〈332〉 and {112}〈111〉 were in the minority in the Cu-Cr-Zr alloy with a higher Zr content (〉0.5wt%). However, in the samples with a lower Zr content (〈0.1wt%), the texture contents of {113}〈332〉, {112}〈111〉, and {111}〈110〉 were in the majority. 展开更多
关键词 cu-cr-zr alloys preferred orientation rolling texture plastic deformation aging treatment alloy element
下载PDF
Effect of sintering temperature on pore ratio and mechanical properties of composite structure in nano graphene reinforced ZA27 based composites 被引量:2
20
作者 Muharrem Pul 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第2期232-243,共12页
Nano graphene platelet(Gr)reinforced nano composites with a zinc–aluminum alloy(ZA27)matrix were produced by powder metallurgy at four different mass ratios(0.5wt%,1.0wt%,2.0wt%and 4.0wt%)and three different sinterin... Nano graphene platelet(Gr)reinforced nano composites with a zinc–aluminum alloy(ZA27)matrix were produced by powder metallurgy at four different mass ratios(0.5wt%,1.0wt%,2.0wt%and 4.0wt%)and three different sintering temperatures(425,450,and 475°C).In order to investigate the effect of sintering temperatures and nano graphene reinforcement materials on the composite structure,the microstructures of the composite samples were investigated and their densities were determined with a scanning electron microscope.Hardness,transverse rupture,and abrasion wear tests were performed to determine the mechanical properties.According to the test results,the porosity increased and the mechanical strength of the nano composites decreased as the amount of nano graphene reinforcement in ZA27 increased.However,when the composites produced in different reinforcement ratios were evaluated,the increase in sintering temperature increased the mechanical structure by positively affecting the composite structure. 展开更多
关键词 NANOCOMPOSITE zinc aluminum alloy graphene microstructure SINTERING mechanical property
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部