期刊文献+
共找到75篇文章
< 1 2 4 >
每页显示 20 50 100
Magnetic Fe_3O_4-Reduced Graphene Oxide Nanocomposites-Based Electrochemical Biosensing 被引量:4
1
作者 Lili Yu Hui Wu +4 位作者 Beina Wu Ziyi Wang Hongmei Cao Congying Fu Nengqin Jia 《Nano-Micro Letters》 SCIE EI CAS 2014年第3期258-267,共10页
An electrochemical biosensing platform was developed based on glucose oxidase(GOx)/Fe3O4-reduced graphene oxide(Fe3O4-RGO) nanosheets loaded on the magnetic glassy carbon electrode(MGCE).With the advantages of the mag... An electrochemical biosensing platform was developed based on glucose oxidase(GOx)/Fe3O4-reduced graphene oxide(Fe3O4-RGO) nanosheets loaded on the magnetic glassy carbon electrode(MGCE).With the advantages of the magnetism, conductivity and biocompatibility of the Fe3O4-RGO nanosheets, the nanocomposites could be facilely adhered to the electrode surface by magnetically controllable assembling and beneficial to achieve the direct redox reactions and electrocatalytic behaviors of GOx immobilized into the nanocomposites. The biosensor exhibited good electrocatalytic activity, high sensitivity and stability. The current response is linear over glucose concentration ranging from 0.05 to 1.5 m M with a low detection limit of0.15 μM. Meanwhile, validation of the applicability of the biosensor was carried out by determining glucose in serum samples. The proposed protocol is simple, inexpensive and convenient, which shows great potential in biosensing application. 展开更多
关键词 fe3o4-reduced graphene oxide(fe3o4-RGo) nanocompositeS magnetically controllable assembling Direct electron transfer BIoSENSoR
下载PDF
Preparation and Characterization of Superparamagnetic Fe_3O_4/CNTs Nanocomposites Dual-drug Carrier 被引量:2
2
作者 张小娟 郝凌云 +4 位作者 WANG Hehe ZHU Xingqun ZHANG Zhiying HU Xiaohong JIANG Wei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第1期42-46,共5页
Fe3O4/carbon nanotubes(Fe3O4/CNTs) nanocomposites were prepared by polylol hightemperature decomposition of the precursor ferric chloride and CNTs in liquid triethylene glycol.After surface modification with hexaned... Fe3O4/carbon nanotubes(Fe3O4/CNTs) nanocomposites were prepared by polylol hightemperature decomposition of the precursor ferric chloride and CNTs in liquid triethylene glycol.After surface modification with hexanediamine,folate was covalently linked to the amine group of magnetic Fe3O4/CNTs nanocomposites.The products were characterized by Fourier-transform infrared spectroscopy,transmission electron microscopy,and vibrating sample magnetometry.Then Fe3O4/CNTs were used as a dual-drug carrier to co-delivery of the hydrophilic drug epirubicin hydrochloride and hydrophobic drug paclitaxel.The results indicated that the Fe3O4/CNTs had a favorable release property for epirubicin and paclitaxel,and thus had potential application in tumor-targeted combination chemotherapy. 展开更多
关键词 fe3o4/CNTs nanocompositeS dual-drug carrier EPIRUBICIN PACLITAXEL
下载PDF
Synthesis of Polyaniline-Fe_3O_4 Nanocomposites and Their Conductivity and Magnetic Properties
3
作者 冷春江 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第5期760-764,共5页
By using inorganic Fe3O4 nanoparticles of different content as nucleation sites, PAn-Fe3O4 nanorods were successfully synthesized through a simple, conventional, and inexpensive one-step in-situ polymerization method.... By using inorganic Fe3O4 nanoparticles of different content as nucleation sites, PAn-Fe3O4 nanorods were successfully synthesized through a simple, conventional, and inexpensive one-step in-situ polymerization method. The TEM images revealed the size and morphology of the resultant nanocomposite. The EDS pattern confirmed the existence of Fe3O4 in the composite. The FT-IR spectral analysis confirmed the formation of PAn encapsulated Fe3O4 nanocomposite. With the content of Fe3O4 increasing, the conductivity of the nanocomposites gradually decreases, meanwhile, the saturation magnetization increases and reveals a super paramagnetic behavior. With controllable electrical, magnetic, and electromagnetic properties, the well-prepared nanocomposites may have the potential applications in chemical sensors, catalysis, microwave absorbing, and electro-magneto-rheological fluids, etc. 展开更多
关键词 PoLYANILINE fe3o4 nanocompositeS CoNDUCTIVITY super paramagnetism
下载PDF
Design of Fe(3–x)O4 raspberry decorated graphene nanocomposites with high performances in lithium-ion battery
4
作者 Olivier Gerber Sylvie Bégin-Colin +7 位作者 Benoit P.Pichon Elodie Barraud Sébastien Lemonnier Cuong Pham-Huu Barbara Daffos Patrice Simon Jeremy Come Dominique Bégin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第2期270-275,共6页
Fe(3–x)O4 raspberry shaped nanostructures/graphene nanocomposites were synthesized by a one-step polyol-solvothermal method to be tested as electrode materials for Li-ion battery(LIB). Indeed, Fe(3–x)O4 raspbe... Fe(3–x)O4 raspberry shaped nanostructures/graphene nanocomposites were synthesized by a one-step polyol-solvothermal method to be tested as electrode materials for Li-ion battery(LIB). Indeed, Fe(3–x)O4 raspberry shaped nanostructures consist of original oriented aggregates of Fe(3–x)O4 magnetite nanocrystals, ensuring a low oxidation state of magnetite and a hollow and porous structure, which has been easily combined with graphene sheets. The resulting nanocomposite powder displays a very homogeneous spatial distribution of Fe(3–x)O4 nanostructures at the surface of the graphene sheets. These original nanostructures and their strong interaction with the graphene sheets resulted in very small capacity fading upon Li+ion intercalation. Reversible capacity, as high as 660 m Ah/g, makes this material promising for anode in Li-ion batteries application. 展开更多
关键词 graphene fe3–xo4 raspberry shaped nanostructures fe3–xo4/graphene nanocomposites Lithium-ion battery Reversible capacity
下载PDF
Ultralow detection limit of giant magnetoresistance biosensor using Fe3O4–graphene composite nanoparticle label
5
作者 徐洁 焦吉庆 +1 位作者 李强 李山东 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第1期151-155,共5页
A special Fe3O4nanoparticles–graphene(Fe3O4–GN) composite as a magnetic label was employed for biodetection using giant magnetoresistance(GMR) sensors with a Wheatstone bridge. The Fe3O4–GN composite exhibits a... A special Fe3O4nanoparticles–graphene(Fe3O4–GN) composite as a magnetic label was employed for biodetection using giant magnetoresistance(GMR) sensors with a Wheatstone bridge. The Fe3O4–GN composite exhibits a strong ferromagnetic behavior with the saturation magnetization MS of approximately 48 emu/g, coercivity HC of 200 Oe, and remanence Mr of 8.3 emu/g, leading to a large magnetic fringing field. However, the Fe3O4 nanoparticles do not aggregate together, which can be attributed to the pinning and separating effects of graphene sheet to the magnetic particles. The Fe3O4–GN composite is especially suitable for biodetection as a promising magnetic label since it combines two advantages of large fringing field and no aggregation. As a result, the concentration x dependence of voltage difference |?V| between detecting and reference sensors undergoes the relationship of |?V| = 240.5 lgx + 515.2 with an ultralow detection limit of 10 ng/mL(very close to the calculated limit of 7 ng/mL) and a wide detection range of 4 orders. 展开更多
关键词 giant magnetoresistance biosensors magnetic label fe3o4graphene composite lowest detection limit
下载PDF
RhB Adsorption Performance of Magnetic Adsorbent Fe_3O_4/RGO Composite and Its Regeneration through A Fenton-like Reaction 被引量:11
6
作者 Yalin Qin Mingce Long +1 位作者 Beihui Tan Baoxue Zhou 《Nano-Micro Letters》 SCIE EI CAS 2014年第2期125-135,共11页
Adsorption is one of the most effective technologies in the treatment of colored matter containing wastewater. Graphene related composites display potential to be an effective adsorbent. However, the adsorption mechan... Adsorption is one of the most effective technologies in the treatment of colored matter containing wastewater. Graphene related composites display potential to be an effective adsorbent. However, the adsorption mechanism and their regeneration approach are still demanding more efforts. An effective magnetically separable absorbent, Fe3O4 and reduced graphene oxide(RGO) composite has been prepared by an in situ coprecipitation and reduction method. According to the characterizations of TEM, XRD, XPS, Raman spectra and BET analyses, Fe3O4 nanoparticles in sizes of 10-20 nm are well dispersed over the RGO nanosheets, resulting in a highest specific area of 296.2 m2/g. The rhodamine B adsorption mechanism on the composites was investigated by the adsorption kinetics and isotherms. The isotherms are fitting better by Langmuir model, and the adsorption kinetic rates depend much on the chemical components of RGO. Compared to active carbon, the composite shows 3.7 times higher adsorption capacity and thirty times faster adsorption rates. Furthermore,with Fe3O4 nanoparticles as the in situ catalysts, the adsorption performance of composites can be restored by carrying out a Fenton-like reaction, which could be a promising regeneration way for the adsorbents in the organic pollutant removal of wastewater. 展开更多
关键词 magnetic adsorbent fe3o4 nanoparticles Reduced grapheme oxide fenton-likereaction REGENERATIoN
下载PDF
Facile Synthesis of the Magnetic Metal Organic Framework Fe_3O_4@UiO-66-NH_2 for Separation of Strontium 被引量:3
7
作者 YIN Liang Liang KONG Xiang Yin +1 位作者 ZHANG Yao JI Yan Qin 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2018年第6期483-488,共6页
A magnetic metal organic framework(MMOF) was synthesized and used to separate Sr^2+ in aqueous solution. The shape and structure of prepared Fe3O4@UiO-66-NH2 were characterized, and the absorbed concentration of st... A magnetic metal organic framework(MMOF) was synthesized and used to separate Sr^2+ in aqueous solution. The shape and structure of prepared Fe3O4@UiO-66-NH2 were characterized, and the absorbed concentration of strontium was determined through inductively coupled plasma mass spectrometry. The results indicated that Fe3O4 and UiO-66-NH2 combined through chemical bonding. The experimental adsorption results for separation of Sr^2+ in aqueous solution indicated that the adsorption of Sr^2+ to Fe3O4@UiO-66-NH2 increased drastically from pH 11 to pH 13. The adsorption isotherm model indicated that the adsorption of Sr^2+ conformed to the Freundlich isotherm model(R2 = 0.9919). The MMOF thus inherited the superior qualities of magnetic composites and metal organic frameworks, and can easily be separated under an external magnetic field. This MMOF thus has potential applications as a magnetic adsorbent for low level radionuclide (90)Sr. 展开更多
关键词 magnetic metal organic framework(MMoF) fe3o4@Uio-66-NH2 RADIoACTIVITY STRoNTIUM Adsorbents
下载PDF
Synthesis of Fe_3O_4-coated silica aerogel nanocomposites 被引量:2
8
作者 Jun Sung LEE Eun Jung LEE Hae Jin HWANG 《中国有色金属学会会刊:英文版》 CSCD 2012年第S3期702-706,共5页
Fe3O4:SiO2 nanocomposite powders were synthesized by a two-step process,which included the precipitation of FeCl2 and FeCl3 and the gelation of silicic acid solution derived from water glass.At first,Fe3O4 nanoparticl... Fe3O4:SiO2 nanocomposite powders were synthesized by a two-step process,which included the precipitation of FeCl2 and FeCl3 and the gelation of silicic acid solution derived from water glass.At first,Fe3O4 nanoparticles having a crystallite size of 20 nm were obtained by controlling the ratio of Fe(II) and Fe(III) precursors.In the second step,Fe3O4 particles were embedded in SiO2 matrix by the hydrolysis and subsequent condensation of the silicic acid solution containing Fe3O4 particles.It was found that the Fe3O4 nanoparticles homogenously disperse in the SiO2 matrix.The Fe3O4:SiO2 nanocomposite exhibited an enhanced thermal stability against oxidation compared with pure Fe3O4.FT-IR analysis indicates the presence of the Si-O-Fe bond in the Fe3O4:SiO2 (1:10,mole fraction) nanocomposite. 展开更多
关键词 nanocomposite fe3o4 Sio2 SoL GEL synthesis
下载PDF
Deposition and Magnetic Properties of Fe_3O_4/Fe/Fe_3O_4 Tri-layer Films 被引量:2
9
作者 T.S.Chin and W.C.Yang (Department of Materials Science and Engineering, Tsing Hua University 101, Section 2, Kuang-Fu Rd., Hsinchu, 30043, Taiwan-China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第2期191-194,共4页
The Fe_3O_4/Fe/Fe_3O_4 (MIM) tri-layer films (200 nm/12-93 nm/200 um) were prepared on Si(100) by DC-magnetron reactive-sputtering followed by air- or vacuum-annealing at 280-400℃ for 1.5 h, respectively. Magnetic pr... The Fe_3O_4/Fe/Fe_3O_4 (MIM) tri-layer films (200 nm/12-93 nm/200 um) were prepared on Si(100) by DC-magnetron reactive-sputtering followed by air- or vacuum-annealing at 280-400℃ for 1.5 h, respectively. Magnetic properties and phases under different sandwich and annealing conditions were studied. In MIM structure, the incorporation of the interlayer iron does increase the magnetization measured under 8 kOe (M_8K), but reduce coercivity (H_c). The H_c of asdeposited films decreases from 354 Oe to 74 Oe; while M_8K increases from 254 to 392 emu/cc. By annealing in air, the whole MIM tri-layer film becomes γ-F_e2O_3, H_c is about 550 O_e and M_8K is around 250 emu/cc. The coercivity mechanism of as-deposited and annealed MIM trilayer films belongs to domain-wall pinning type. δM plots show that when the interlayer Fe thickness is 12 um, the Fe and Fe_3O_4 layers are decoupled in the as-deposited and annealed states; while it is coupled in the as deposited state when the Fe thickness increases to 23 um. Vacuum annealing of the MIM films leads to increase in both coercivity and magnetization, and to enhance the exchange coupling between layers. 展开更多
关键词 fe Deposition and magnetic Properties of fe3o4/fe/fe3o4 Tri-layer Films
下载PDF
Modification of Fe_3O_4 Magnetic Nanoparticles by L-dopa or Dopamine as an Enzyme Support 被引量:1
10
作者 PENG Hong ZHANG Xiao HUANG Kaixun XU Huibi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第4期480-485,共6页
Fe3O4 magnetic nanoparticles were prepared by co-precipitation of Fe^2+ and Fe^3+ in an ammonia solution, and its size was about 36 nm measured by an atomic force microscope. Fe3O4 magnetic nanoparticles were modifi... Fe3O4 magnetic nanoparticles were prepared by co-precipitation of Fe^2+ and Fe^3+ in an ammonia solution, and its size was about 36 nm measured by an atomic force microscope. Fe3O4 magnetic nanoparticles were modified by L-dopa or dopamine using sonication method. The analysis of FTIR clearly indicated the formation of Fe-O-C bond. Direct immobilization of trypsin (EC: 3.4.21.4) on Fe3O4 magnetic nanoparticles with L-dopa and dopamine spacer was investigated using glutaraldehyde as a coupling agent. No significant changes in the size and magnetic property of the three kinds of magnetic nanoparticles linked with or without trypsin were observed. The existence of the spacer molecule on magnetic nanoparticles could greatly improve the activity and the storage stability of bound trypsin through increasing the flexibility of enzyme and changing the microenvironment on nanoparticles surface compared to the naked magnetic nanoparticles. 展开更多
关键词 fe3o4 magnetic nanoparticles MoDIFICATIoN TRYPSIN IMMoBILIZATIoN L-DoPA DoPAMINE
下载PDF
Synthesis of Fe_3O_4 Magnetic Powder from Spent Pickling Liquors 被引量:1
11
作者 Xingyao Wang Feifei Lv 《Transactions of Tianjin University》 EI CAS 2018年第1期45-50,共6页
Spent pickling liquors pose a serious environmental problem in most industrialized countries, mainly owing to their corrosive properties and their ferrous iron and hydrochloric acid content. In this paper, spent pickl... Spent pickling liquors pose a serious environmental problem in most industrialized countries, mainly owing to their corrosive properties and their ferrous iron and hydrochloric acid content. In this paper, spent pickling liquor was used as an inexpensive raw material to prepare Fe304 magnetic powder via an oxidation method. Being able to recover the dissolved iron from spent pickling liquors would not only salvage a valuable material but also render the effluent environmentally benign. The structure of the Fe_3O_4 magnetic powder was characterized by X-ray diffraction. The morphology and size were characterized by scanning electron microscopy and transmission electron microscopy. Their magnetic properties were tested at room temperature by a vibrating sample magnetometer. In addition, the saturation magnetization of Fe_3 O_4 products can be further enhanced to 96.1 emu/g after purification. 展开更多
关键词 SPENT PICKLING LIQUoR fe3o4 magnetic PoWDER oXIDATIoN
下载PDF
Synthesis, Electrical and Magnetic Properties of Fe304 Doped by Dy^3+ 被引量:1
12
作者 Wang Jingping Hao Xianfeng +3 位作者 Lü Minfeng Liu Jianfen Xing Xianran Meng Jian 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第4期505-505,共1页
The Dy^3+ -doped Fe3O4 samples were synthesized by sol-gel method, and the effects of dopant on the electrical and magnetic properties were investigated. According to XRD analysis, the high concentration doping of dy... The Dy^3+ -doped Fe3O4 samples were synthesized by sol-gel method, and the effects of dopant on the electrical and magnetic properties were investigated. According to XRD analysis, the high concentration doping of dysprosium ions in Fe3O4 can not be obtained due to the difference of ionic radius, and Fe^3 + ions are replaced by only a small amount of dysprosium ions. The magnetic property was characterized by VSM. The substitution results in the change of saturation magnetization, which may be due to the complex effects of increasing magnetization resulted from Dy^3+ substitution and decreasing magnetization resulted from the impurity. The electrical property was characterized by four-probe method. With the increasing eoped content, magnetoresistance also increases, then decreases, and increases again. The spin-polarization of doped samples is lower than that of Fe3O4. Lower spin-polarization results in lower tunneling magnetoresistance. Fortunately, barrier was obtained by the second phase at the same time when sample was synthesized. The increase of appropriate barrier height leads to the change of tunneling magnetoresistance. 展开更多
关键词 fe3o4 Dy-doped citrate precursor technique electrical and magnetic properties rare earths
下载PDF
Synthesis and Characterization of Superparamagnetic Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>Core-Shell Composite Nanoparticles 被引量:3
13
作者 Meizhen Gao Wen Li +2 位作者 Jingwei Dong Zhirong Zhang Bingjun Yang 《World Journal of Condensed Matter Physics》 2011年第2期49-54,共6页
The Fe3O4@SiO2 composite nanoparticles were obtained from as-synthesized magnetite (Fe3O4) nanoparticles through the modified St?ber method. Then, the Fe3O4 nanoparticles and Fe3O4@SiO2 composite nanoparticles were ch... The Fe3O4@SiO2 composite nanoparticles were obtained from as-synthesized magnetite (Fe3O4) nanoparticles through the modified St?ber method. Then, the Fe3O4 nanoparticles and Fe3O4@SiO2 composite nanoparticles were characterized by means of X-ray diffraction (XRD), Raman spectra, scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). Recently, the studies focus on how to improve the dispersion of composite particle and achieve good magnetic performance. Hence effects of the volume ratio of tetraethyl orthosilicate (TEOS) and magnetite colloid on the structural, morphological and magnetic properties of the composite nanoparticles were systematically investi-gated. The results revealed that the Fe3O4@SiO2 had better thermal stability and dispersion than the magnetite nanoparticles. Furthermore, the particle size and magnetic property of the Fe3O4@SiO2 composite nanoparticles can be adjusted by changing the volume ratio of TEOS and magnetite colloid. 展开更多
关键词 magnetITE NANoPARTICLES fe3o4@Sio2 Composite NANoPARTICLES Dispersion Thermal Stability Particle Size magnetic Property
下载PDF
Magnetic field aligned orderly arrangement of Fe3O4 nanoparticles in CS/PVA/Fe3O4 membranes 被引量:1
14
作者 杜萌 曹兴忠 +3 位作者 夏锐 周忠坡 靳硕学 王宝义 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第2期581-587,共7页
The CS/PVA/Fe_3O_4 nanocomposite membranes with chainlike arrangement of Fe_3O_4 nanoparticles are prepared by a magnetic-field-assisted solution casting method. The aim of this work is to investigate the relationship... The CS/PVA/Fe_3O_4 nanocomposite membranes with chainlike arrangement of Fe_3O_4 nanoparticles are prepared by a magnetic-field-assisted solution casting method. The aim of this work is to investigate the relationship between the microstructure of the magnetic anisotropic CS/PVA/Fe_3O_4 membrane and the evolved macroscopic physicochemical property. With the same doping content, the relative crystallinity of CS/PVA/Fe_3O_4-M is lower than that of CS/PVA/Fe_3O_4.The Fourier transform infrared spectroscopy(FT-TR) measurements indicate that there is no chemical bonding between polymer molecule and Fe_3O_4 nanoparticle. The Fe_3O_4 nanoparticles in CS/PVA/Fe_3O_4 and CS/PVA/Fe_3O_4-M are wrapped by the chains of CS/PVA, which is also confirmed by scanning electron microscopy(SEM) and x-ray diffraction(XRD)analysis. The saturation magnetization value of CS/PVA/Fe_3O_4-M obviously increases compared with that of non-magnetic aligned membrane, meanwhile the transmittance decreases in the UV-visible region. The o-Ps lifetime distribution provides information about the free-volume nanoholes present in the amorphous region. It is suggested that the microstructure of CS/PVA/Fe_3O_4 membrane can be modified in its curing process under a magnetic field, which could affect the magnetic properties and the transmittance of nanocomposite membrane. In brief, a full understanding of the relationship between the microstructure and the macroscopic property of CS/PVA/Fe_3O_4 nanocomposite plays a vital role in exploring and designing the novel multifunctional materials. 展开更多
关键词 microstructure CS/PVA/fe3o4 membrane positron annihilation magnetic properties
下载PDF
GQDs/WS_(2)/Fe_(3)O_(4)磁分离适配体荧光传感器构建及其在甲胎蛋白中的应用
15
作者 李肖沙 刘莹 +2 位作者 申炳俊 金丽虹 夏冰 《长春理工大学学报(自然科学版)》 2023年第5期122-129,共8页
以聚乙二醇化石墨烯量子点标记的适配体(GQDs-PEG-Apt)作为甲胎蛋白(AFP)的特异性识别分子和能量供体,以WS_(2)/Fe_(3)O_(4)纳米复合物为单一能量受体,构建磁分离适配体荧光传感器并用血清AFP定量检测。样本中没有AFP时,能量供体与受体... 以聚乙二醇化石墨烯量子点标记的适配体(GQDs-PEG-Apt)作为甲胎蛋白(AFP)的特异性识别分子和能量供体,以WS_(2)/Fe_(3)O_(4)纳米复合物为单一能量受体,构建磁分离适配体荧光传感器并用血清AFP定量检测。样本中没有AFP时,能量供体与受体间π-π堆积作用和非辐射共振能力转移(FRET)令GQDs-PEG-Apt荧光猝灭;存在AFP时,GQDs-PEG-Apt与靶标结合并从WS_(2)/Fe_(3)O_(4)纳米复合物表面脱离,体系荧光强度得以恢复;经过磁性分离后,传感体系上清液487 nm处荧光强度随AFP浓度增大而增强;浓度在5~1000 ng/mL范围内,传感体系荧光相对恢复值与AFP浓度呈现良好的线性关系,线性相关系数为0.989。构建的传感器具有良好的特异性,可实现血清AFP定量检测,其检测限(LOD)为0.5 pg/mL,相对标准偏差(RSD)为3.32%~6.41%,回收率为91.92%~99.28%。 展开更多
关键词 石墨烯量子点 适配体 WS_(2)/fe_(3)o_(4)纳米复合物 磁分离 甲胎蛋白
下载PDF
Field-variable magnetic domain characterization of individual 10 nm Fe3O4 nanoparticles
16
作者 李正华 李翔 陆伟 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第7期470-474,共5页
The local detection of magnetic domains of isolated 10 nm Fe3O4 magnetic nanoparticles(MNPs) has been achieved by field-variable magnetic force microscopy(MFM) with high spatial resolution.The domain configuration of ... The local detection of magnetic domains of isolated 10 nm Fe3O4 magnetic nanoparticles(MNPs) has been achieved by field-variable magnetic force microscopy(MFM) with high spatial resolution.The domain configuration of an individual MNP shows a typical dipolar response.The magnetization reversal of MNP domains is governed by a coherent rotation mechanism, which is consistent with the theoretical results given by micromagnetic calculations.Present results suggest that the field-variable MFM has great potential in providing nanoscale magnetic information on magnetic nanostructures,such as nanoparticles, nanodots, skyrmions, and vortices, with high spatial resolution.This is crucial for the development and application of magnetic nanostructures and devices. 展开更多
关键词 fe3o4 nanoparticles magnetic FoRCE MICRoSCoPY magnetic DoMAIN
下载PDF
Controllable Synthesis and Magnetic Properties of Monodisperse Fe_3O_4 Nanoparticles
17
作者 王朱良 马慧 +3 位作者 王芳 李敏 张利国 许小红 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第10期107-111,共5页
Magnetite (Fe3O4) nanoparticles with different sizes and shapes are synthesized by the thermal decomposition method. Two approaches, non-injection one-pot and hot-injection methods, are designed to investigate the g... Magnetite (Fe3O4) nanoparticles with different sizes and shapes are synthesized by the thermal decomposition method. Two approaches, non-injection one-pot and hot-injection methods, are designed to investigate the growth mechanism in detail. It is found that the size and shape of nanoparticles are determined by adjusting the precursor concentration and duration time, which can be well explained by the mechanism based on the LaMer model in our synthetic system. The monodisperse Fe3O4 nanoparticles have a mean diameter from 5nm to 16nm, and shape evolution from spherical to triangular and cubic. The magnetic properties are size-dependent, and Fe3O4 nanoparticles in small size about 5 nm exhibit superparamagnetie properties at room temperature and maximum saturation magnetization approaches to 78 emu/g, whereas Fe3O4 nanoparticles develop ferromagnetic properties when the diameter increases to about 16nm. 展开更多
关键词 fe acac in IS on of Controllable Synthesis and magnetic Properties of Monodisperse fe3o4 Nanoparticles
下载PDF
Preparation and Characterization of Magnetic Fe3O4-PAMAM-antibody Complex and Its Application in the Removal of Tetracycline from Wastewater
18
作者 欧敏锐 张子惠 +3 位作者 陈志鸿 温昱恺 杨黄浩 许小平 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2019年第7期1136-1145,共10页
Antigens and antibodies can bind specifically, so antibiotic antibody shows potential biological and environmental applications on the removal of antibiotic. In the present study, novel antibody complex was synthesize... Antigens and antibodies can bind specifically, so antibiotic antibody shows potential biological and environmental applications on the removal of antibiotic. In the present study, novel antibody complex was synthesized from polyamide-amine dendrimer immobilized tetracycline(TC) antibody with the encapsulation of magnetic Fe3O4 nanoparticles. As-prepared magnetic Fe3O4-PAMAM-antibody complexes were characterized by different techniques such as Fourier transform infrared(FT-IR), X-ray diffraction(XRD), Nuclear magnetic resonance(NMR)and ultraviolet(UV) analysis spectra. The prepared antibody complexes exhibited high adsorption properties for TC from aqueous solutions. These results suggest that the antibody complex expects to be a potential candidate for the wastewater treatment. 展开更多
关键词 PAMAM magnetic fe3o4 ANTIBoDY CoMPLEX TETRACYCLINE
下载PDF
Preparation of Fe_3O_4/PS Magnetic Particles by Dispersion Polymerization
19
作者 Xiao Bin DING Hua Zhong SUN +1 位作者 Guo Xiang WAN Ying Yan JIANG(a Chengdu Institute of Organic Chemistry, Chinese Academy of Science, Chengdu 610041b Beijing Institute of Chemistry,Chinase Academy of science , BeiJing 100080) 《Chinese Chemical Letters》 SCIE CAS CSCD 1997年第2期183-184,共2页
Fe_3O_4/PS magnetic particles with core/shell structure has been prepared in the presence of Fe3O4 magnetic fluid in ethanol/water mixture.Magnetic particles with diameter size range from 5. 54 t0 187. 32 μm were obt... Fe_3O_4/PS magnetic particles with core/shell structure has been prepared in the presence of Fe3O4 magnetic fluid in ethanol/water mixture.Magnetic particles with diameter size range from 5. 54 t0 187. 32 μm were obtained by different reaction conditions.Some parameters such as ethanol, PEG and monomer which affect particle size diameter and size distribution are discussed briefly in this paper. 展开更多
关键词 PS Preparation of fe3o4/PS magnetic Particles by Dispersion Polymerization fe
下载PDF
Analysis of Spectroscopic, Optical and Magnetic Behaviour of PVDF/PMMA Blend Embedded by Magnetite (Fe<sub>3</sub>O<sub>4</sub>) Nanoparticles
20
作者 Laila H. Gaabour 《Optics and Photonics Journal》 2020年第8期197-209,共13页
In the present work, magnetite (Fe<sub>3</sub>O<sub>4</sub>) nanoparticles have been prepared by a simple chemical method. Polymer nanocomposites based on the blend between poly vinylamine fluo... In the present work, magnetite (Fe<sub>3</sub>O<sub>4</sub>) nanoparticles have been prepared by a simple chemical method. Polymer nanocomposites based on the blend between poly vinylamine fluoride (PVDF) and (methyl methacrylate) (PMMA) doped with different concentrations of Fe<sub>3</sub>O<sub>4</sub> nanoparticles have been prepared. The structural, optical, and magnetization properties of the nanocomposite samples were studied using suitable techniques. The X-ray study reflected that the cubic spinal structure of pure Fe<sub>3</sub>O<sub>4</sub> crystal. No small peaks or ripples were found in the X-ray spectra, conforming to good dispersion of Fe<sub>3</sub>O<sub>4</sub> within PVDF/PMMA matrices. The FT-IR analysis demonstrated the miscibility between the PVDF and PMMA blend with the interaction between the polymer blend and Fe<sub>3</sub>O<sub>4</sub>. The values of the band gap from UV-Vis study were decreased up to 4.21 eV, 3.01 eV for direct and indirect measurements, respectively. The magnetization was measured as a function of the applied magnetic field in the range of −2000 - 2000 Oersted. The curves of the magnetization indicated a paramagnetic behavior of pure Fe<sub>3</sub>O<sub>4</sub> nanoparticles and PVDF/PMMA-Fe<sub>3</sub>O<sub>4</sub> nanocomposites. The values of saturation magnetization for pure Fe<sub>3</sub>O<sub>4</sub> are nearly 75 emu/g, exhibiting a paramagnetic behavior, and it is decreased with the increase of Fe<sub>3</sub>O<sub>4</sub> content. 展开更多
关键词 PVDF/PMMA Blend magnetite (fe3o4) Nanoparticles XRD FT-IR UV-Vis Spectroscopy magnetization Properties
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部