Based on the density functional calculations, the structural and electronic properties of the WS2/graphene heterojunction under different strains are investigated. The calculated results show that unlike the free mono...Based on the density functional calculations, the structural and electronic properties of the WS2/graphene heterojunction under different strains are investigated. The calculated results show that unlike the free mono-layer WS2, the monolayer WS2 in the equilibrium WS2/graphene heterojunctionis characterized by indirect band gap due to the weak van der Waals interaction. The height of the schottky barrier for the WS2/graphene heterojunction is 0.13 eV, which is lower than the conventional metal/MoS2 contact. Moreover, the band properties and height of schottky barrier for WS2/graphene heterojunction can be tuned by strain. It is found that the height of the schottky barrier can be tuned to be near zero under an in-plane compressive strain, and the band gap of the WS2 in the heterojunction is turned into a direct band gap from the indirect band gap with the increasing schottky barrier height under an in-plane tensile strain. Our calculation results may provide a potential guidance for designing and fabricating the WS2-based field effect transistors.展开更多
Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology r...Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology regulation, and heterojunction construction strategies to synthesize N-GQD/N-doped TiO_(2)/P-doped porous hollow g-C_(3)N_(4) nanotube (PCN) composite photocatalysts (denoted as G-TPCN). The optimal sample (G-TPCN doped with 0.1wt% N-GQD, denoted as 0.1% G-TPCN) exhibits significantly enhanced photoabsorption, which is attributed to the change in bandgap caused by elemental doping (P and N), the improved light-harvesting resulting from the tube structure, and the upconversion effect of N-GQDs. In addition, the internal charge separation and transfer capability of0.1% G-TPCN are dramatically boosted, and its carrier concentration is 3.7, 2.3, and 1.9 times that of N-TiO_(2), PCN, and N-TiO_(2)/PCN(TPCN-1), respectively. This phenomenon is attributed to the formation of Z-scheme heterojunction between N-TiO_(2) and PCNs, the excellent electron conduction ability of N-GQDs, and the short transfer distance caused by the porous nanotube structure. Compared with those of N-TiO_(2), PCNs, and TPCN-1, the H2 production activity of 0.1%G-TPCN under visible light is enhanced by 12.4, 2.3, and 1.4times, respectively, and its ciprofloxacin (CIP) degradation rate is increased by 7.9, 5.7, and 2.9 times, respectively. The optimized performance benefits from excellent photoresponsiveness and improved carrier separation and migration efficiencies. Finally, the photocatalytic mechanism of 0.1% G-TPCN and five possible degradation pathways of CIP are proposed. This study clarifies the mechanism of multiple modification strategies to synergistically improve the photocatalytic performance of 0.1% G-TPCN and provides a potential strategy for rationally designing novel photocatalysts for environmental remediation and solar energy conversion.展开更多
Willow branch-shaped MoS2/CdS heterojunctions are successfully synthesized for the first time by a facile one-pot hydrothermal method. The as-prepared samples were characterized by X-ray diffraction, X-ray photoelectr...Willow branch-shaped MoS2/CdS heterojunctions are successfully synthesized for the first time by a facile one-pot hydrothermal method. The as-prepared samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption measurements, diffuse reflectance spectroscopy, and photoelectrochemical and photoluminescence spectroscopy tests. The photocatalytic hydrogen evolution activities of the samples were evaluated under visible light irradiation. The resulting MoS2/CdS heterojunctions exhibit a much improved photocatalytic hydrogen evolution activity than that obtained with CdS and MoS2. In particular, the optimized MC-5 (5 at.% MoS2/CdS) photocatalyst achieved the highest hydrogen production rate of 250.8 μmol h–1, which is 28 times higher than that of pristine CdS. The apparent quantum efficiency (AQE) at 420 nm was 3.66%. Further detailed characterizations revealed that the enhanced photocatalytic activity of the MoS2/CdS heterojunctions could be attributed to the efficient transfer and separation of photogenerated charge carriers resulting from the core-shell structure and the close contact between MoS2 nanosheets and CdS single-crystal nanorods, as well as to increased visible light absorption. A tentative mechanism for photocatalytic H2 evolution by MoS2/CdS heterojunctions was proposed. This work will open up new opportunities for developing more efficient photocatalysts for water splitting.展开更多
Transition-metal dichalcogenide(TMD) semiconductors have attracted interest as photoelectrochemical(PEC) electrodes due to their novel band-gap structures,optoelectronic properties, and photocatalytic activities.Howev...Transition-metal dichalcogenide(TMD) semiconductors have attracted interest as photoelectrochemical(PEC) electrodes due to their novel band-gap structures,optoelectronic properties, and photocatalytic activities.However, the photo-harvesting efficiency still requires improvement. In this study, A TMD stacked heterojunction structure was adopted to further enhance the performance of the PEC cathode. A P-type WSe_2 and an N-type Mo S_2 monolayer were stacked layer-by-layer to build a ultrathin vertical heterojunction using a micro-fabrication method.In situ measurement was employed to characterize the intrinsic PEC performance on a single-sheet heterostructure.Benefitting from its built-in electric field and type II band alignment, the MoS_2/WSe_2 bilayer heterojunction exhibited exceptional photocatalytic activity and a high incident photo-to-current conversion efficiency(IPCE). Comparing with the monolayer WSe_2 cathode, the PEC current and the IPCE of the bilayer heterojunction increased by a factor of 5.6 and enhanced 50%, respectively. The intriguing performance renders the MoS_2/WSe_2 heterojunction attractive for application in high-performance PEC water splitting.展开更多
The design and development of electrocatalysts composed of non-noble-metal catalysts with both large surface area and high electrical conductivities are crucial for the hydrogen evolution reaction(HER).Here,a xylose-b...The design and development of electrocatalysts composed of non-noble-metal catalysts with both large surface area and high electrical conductivities are crucial for the hydrogen evolution reaction(HER).Here,a xylose-based porous carbon is coupled with a MoS2-Mo P heterojunction(MoS2-Mo P/FPC)hybrid and used as a promising catalyst for HER.The hybrid is prepared by immobilizing petal-like MoS2 nanosheets on porous carbon(MoS2/FPC),followed by controlling the phosphidation in Ar/H2 to form MoS2-Mo P/FPC.Red phosphorus provides the P species that can induce the construction of the heterojunction under the reducing atmosphere,along with the generation of a Mo P phase and the splitting of the MoS2 phase.The as-prepared MoS2-Mo P/FPC catalyst offers a low overpotential of 144 mV at a current density of 10 m A cm^-2 and a small Tafel slope of 41 m V dec^-1 for the HER in acidic media,as well as remarkable stability.Apart from the active nature of the hybrid,its outstanding activity is attributed to the MoS2-Mo P heterojunction,and the good charge/mass-transfer ability of porous carbon.This strategy provides a new method to develop and design low-cost and high-performance catalysts for the HER.展开更多
3D flower-like hierarchical mesoporous Bi_(4)O_(5)I_(2)/MoS_(2)Z-scheme layered heterojunction photocatalyst was fabricated by oil bath and hydrothermal methods.The heterojunction with narrow band gap of~1.95 eV exten...3D flower-like hierarchical mesoporous Bi_(4)O_(5)I_(2)/MoS_(2)Z-scheme layered heterojunction photocatalyst was fabricated by oil bath and hydrothermal methods.The heterojunction with narrow band gap of~1.95 eV extended the photoresponse to near-infrared region,which showed obvious photothermal effect due to the introduction of MoS_(2) with broad spectrum response.MoS_(2) nanosheets were anchored onto the surface of flower-like hierarchical mesoporous Bi_(4)O_(5)I_(2) nanosheets,thereby forming efficient layered heterojunctions,the solar-driven photocatalytic efficiency in degradation of highly toxic dichlorophenol and reduction of hexavalent chromium was improved to 98.5%and 99.2%,which was~4 and 7 times higher than that of the pristine Bi_(4)O_(5)I_(2),respectively.In addition,the photocatalytic hydrogen production rate reached 496.78 μmol h^(-1)g^(-1),which was~6 times higher than that of the pristine Bi_(4)O_(5)I_(2).The excellent photocatalytic performance can be ascribed to the promoted photothermal effect,as well as,the formation of compact Z-scheme layered heterojunctions.The 3D flower-like hierarchical mesoporous structure provided adequate surface active-sites,which was conducive to the mass transfer.Moreover,the high stability of the prepared photocatalyst further promoted its potential practical application.This strategy also provides new insights for fabricating layered Zscheme heterojunctions photocatalysts with highly photothermal-photocatalytic efficiency.展开更多
The substrate treatment with seeding promoter can promote the two-dimensional material lateral growth in chemical vapor deposition (CVD) process. Herein, graphene quantum dots (GQDs) as a novel seeding promoter w...The substrate treatment with seeding promoter can promote the two-dimensional material lateral growth in chemical vapor deposition (CVD) process. Herein, graphene quantum dots (GQDs) as a novel seeding promoter were used to obtain uniform large-area MoS2 monolayer. The obtained monolayer MoS2 films were confirmed by optical microscope, scanning electron microscope, Raman and photoluminescence spectra. Raman mapping revealed that the MoS2 monolayer was largely homogeneous.展开更多
TiO_(2)is the dominant and most widely researched photocatalyst for environmental remediation,however,the drawbacks,such as only responding to UV light(<5%of sunlight),low charge separation efficiency,and difficult...TiO_(2)is the dominant and most widely researched photocatalyst for environmental remediation,however,the drawbacks,such as only responding to UV light(<5%of sunlight),low charge separation efficiency,and difficulties in recycling,have severely hindered its practical application.Herein,we synthesized magnetically separable Fe_(3)O_(4)@MoS_(2)@mesoporous TiO_(2)(FMmT)photocatalysts via a simple,green,and template-free solvothermal method combined with ultrasonic hydrolysis.It is found that FMmT possesses a high specific surface area(55.09 m2·g−1),enhanced visible-light responsiveness(~521 nm),and remarkable photogenerated charge separation efficiency.In addition,the photocatalytic degradation efficiencies of FMmT for methylene blue(MB),rhodamine B(RhB),and tetracycline(TC)are 99.4%,98.5%,and 89.3%within 300 min,respectively.The corresponding degradation rates are 4.5,4.3,and 3.1 times higher than those of pure TiO_(2)separately.Owing to the high saturation magnetization(43.1 A·m^(2)·kg^(−1)),FMmT can achieve effective recycling with an applied magnetic field.The improved photocatalytic activity is closely related to the effective transport of photogenerated electrons by the active interlayer MoS_(2) and the electron–hole separation caused by the MoS_(2)@TiO_(2)heterojunction.Meanwhile,the excellent light-harvesting ability and abundant reactive sites of the mesoporous TiO_(2)shell further boost the photocatalytic efficiency of FMmT.This work provides a new approach and some experimental basis for the design and performance improvement of magnetic photocatalysts by innovatively incorporating MoS2 as the active interlayer and integrating it with a mesoporous shell.展开更多
MoS_2 has attracted attention as a promising hydrogen evolution reaction(HER) catalyst and a supercapacitor electrode material. However, its catalytic activity and capacitive performance are still hindered by its aggr...MoS_2 has attracted attention as a promising hydrogen evolution reaction(HER) catalyst and a supercapacitor electrode material. However, its catalytic activity and capacitive performance are still hindered by its aggregation and poor intrinsic conductivity. Here, hollow rGO sphere-supported ultrathin MoS_2 nanosheet arrays(hrGO@MoS_2) are constructed via a dual-template approach and employed as bifunctional HER catalyst and supercapacitor electrode material. Because of the expanded interlayer spacing in MoS_2 nanosheets and more exposed electroactive S–Mo–S edges, the constructed h-rGO@MoS_2 architectures exhibit enhanced HER performance. Furthermore, benefiting from the synergistic effect of the improved conductivity and boosted specific surface areas(144.9 m^2 g^(-1), ca. 4.6-times that of pristine MoS_2), the h-rGO@MoS_2 architecture shows a high specific capacitance(238 F g^(-1) at a current density of 0.5 A g^(-1)), excellent rate capacitance, and remarkable cycle stability. Our synthesis method may be extended to construct other vertically aligned hollow architectures,which may serve both as efficient HER catalysts and supercapacitor electrodes.展开更多
The hydrogen evolution reaction performance of semiconducting 2H-phase molybdenum disulfide(2H-MoS_(2))presents a significant hurdle in realizing its full potential applications.Here,we utilize theoretical calculation...The hydrogen evolution reaction performance of semiconducting 2H-phase molybdenum disulfide(2H-MoS_(2))presents a significant hurdle in realizing its full potential applications.Here,we utilize theoretical calculations to predict possible functionalized graphene quantum dots(GQDs),which can enhance HER activity of bulk MoS_(2).Subsequently,we design a functionalized GQD-induced in-situ bottom-up strategy to fabricate near atom-layer 2H-MoS_(2) nanosheets mediated with GQDs(ALQD)by modulating the concentration of electron withdrawing/donating functional groups.Experimental results reveal that the introduction of a series of functionalized GQDs during the synthesis of ALQD plays a crucial role.Notably,the higher the concentration and strength of electron-withdrawing functional groups on GQDs,the thinner and more active the resulting ALQD are.Remarkably,the synthesized near atom-layer ALQD-SO_(3)demonstrate significantly improved HER performance.Our GQD-induced strategy provides a simple and efficient approach for expanding the catalytic application of MoS_(2).Furthermore,it holds substantial potential for developing nanosheets in other transition-metal dichalcogenide materials.展开更多
MoS_2-decorated C_3N_4(C_3N_4/MoS_2) nanosheets hybrid photocatalysts were prepared by a simple sonication-impregnation method. Face-to-face lamellar heterojunctions were well established between two dimension(2D) C_3...MoS_2-decorated C_3N_4(C_3N_4/MoS_2) nanosheets hybrid photocatalysts were prepared by a simple sonication-impregnation method. Face-to-face lamellar heterojunctions were well established between two dimension(2D) C_3N_4 and MoS_2 nanosheets. The effects of MoS_2 content on the light absorption, charge transfer and photocatalytic activity of the hybrid samples were investigated. Characterization results show that MoS_2 nanosheets are well anchored on the face of C_3N_4 nanosheets and the composites have well dispersed layered morphology. After loading with MoS_2, the light absorption of composites was much improved, especially in visible-light region. The photocatalytic activities of C_3N_4/MoS_2 samples were evaluated based on the H_2 evolution under visible light irradiation(λ > 400 nm). When the loading amount of MoS_2 was increased to 5 wt%, the highest H_2 evolution rate(274 μmol·g^(-1)·h^(-1)) was obtained. Compared with samples obtained from direct impregnation method, sonication pretreatment is favorable for the formation of 2D layered heterojuctions and thus improve the photocatalytic activity. Slightly deactivation of C_3N_4/MoS_2 composites could be observed when recycled due to the mild photocorrosion of MoS_2. Based on the band alignments of C_3N_4 and MoS_2, a possible photocatalytic mechanism was discussed, where MoS_2 could efficiently promote the separation of the photogenerated carriers of C_3N_4.展开更多
Two-dimensional(2D) materials and their heterostructures have attracted a lot of attention due to their unique electronic and optical properties. MoS_2 as the most typical 2D semiconductors has great application poten...Two-dimensional(2D) materials and their heterostructures have attracted a lot of attention due to their unique electronic and optical properties. MoS_2 as the most typical 2D semiconductors has great application potential in thin film transistors, photodetector, hydrogen evolution reaction, memory device, etc. However, the performance of MoS_2 devices is limited by the contact resistance and the improvement of its contact quality is important. In this work, we report the experimental investigation of pressure-enhanced contact quality between monolayer MoS_2 and graphite by conductive atom force microscope(C-AFM). It was found that at high pressure, the contact quality between graphite and MoS_2 is significantly improved. This pressure-mediated contact quality improvement between MoS_2 and graphite comes from the enhanced charge transfer between MoS_2 and graphite when MoS_2 is stretched. Our results provide a new way to enhance the contact quality between MoS_2 and graphite for further applications.展开更多
The formation of heterojunction within solid-state devices enables them with eventually high performances,but provides a challenge for material synthesis and device fabrication because strict conditions such as lattic...The formation of heterojunction within solid-state devices enables them with eventually high performances,but provides a challenge for material synthesis and device fabrication because strict conditions such as lattice match are needed.Herein,we show a facile method to fabricate a van der Waals(vdW)heterojunction between two-dimensional(2D)bismuth oxyselenide(Bi2O2Se)and graphene,during which the graphene is directly transferred to the Bi2O2Se and served as a lowcontract-resistant electrode with small work function mismatch(~50 meV).As an optoelectronic device,the Bi2O2Se/graphene vdW heterojunction allows for the efficient sensing toward 1200-nm incident laser.Regarding the application of fieldeffect transistors(FETs),the short-channel(50 nm)sample can be synthesized by utilizing these two 2D materials(ie,channel:Bi2O2Se;drain/source terminal:graphene)and the n-type characteristic can be observed with the accordant field modulation.It is confirmed that we show a simple way to prepare the vdW heterojunction which is aiming to the high-performance applications among optoelectronics and FETs.展开更多
Graphene monolayer has been extensively applied as a transparency electrode material in photoelectronic devices due to its high transmittance,high carrier mobility,and ultrafast carrier dynamics.In this study,a high-p...Graphene monolayer has been extensively applied as a transparency electrode material in photoelectronic devices due to its high transmittance,high carrier mobility,and ultrafast carrier dynamics.In this study,a high-performance self-powered photodetector,which is made of a SnO_(2)microwire,p-type GaN film,and monolayer graphene transparent electrode,was proposed and fabricated.The detector is sensitive to ultraviolet light signals and illustrates pronounced detection performances,including a peak respon-sivity∼223.7 mA W^(-1),a detectivity∼6.9×10^(12)Jones,fast response speed(rising/decaying times∼18/580μs),and excellent external quantum efficiency∼77%at 360 nm light illumination without exter-nal power supply.Compared with the pristine SnO_(2)/GaN photodetector using ITO electrode,the device performances of responsivity and detectivity are significantly increased over 6×10^(3)%and 3×10^(3)%,respectively.The performance-enhanced characteristics are mainly attributed to the high-quality het-erointerface of n-SnO_(2)/p-GaN,the highly conductive capacity,and the unique transparency of graphene electrodes.Particularly,the built-in potential formed at the SnO_(2)/GaN heterojunction interface could be strengthened by the Schottky potential barrier derived from the graphene electrode and SnO_(2)wire,en-hancing the carrier collection efficiency through graphene as a charge collection medium.This work is of great importance and significance to developing excellent-performance ultraviolet photodetectors for photovoltaic and optoelectronic applications in a self-powered operation manner.展开更多
Understanding the fundamental charge carrier dynamics is of great significance for photodetectors with both high speed and high responsivity.Devices based on two-dimensional(2D)transition metal dichalcogenides can exh...Understanding the fundamental charge carrier dynamics is of great significance for photodetectors with both high speed and high responsivity.Devices based on two-dimensional(2D)transition metal dichalcogenides can exhibit picosecond photoresponse speed.However,2D materials naturally have low absorption,and when increasing thickness to gain higher responsivity,the response time usually slows to nanoseconds,limiting their photodetection performance.Here,by taking time-resolved photocurrent measurements,we demonstrated that graphene/MoTe_(2) van der Waals heterojunctions realize a fast 10 ps photoresponse time owing to the reduced average photocurrent drift time in the heterojunction,which is fundamentally distinct from traditional Dirac semimetal photodetectors such as graphene or Cd_(3)As_(2) and implies a photodetection bandwidth as wide as 100 GHz.Furthermore,we found that an additional charge carrier transport channel provided by graphene can ef-fectively decrease the photocurrent recombination loss to the entire device,preserving a high responsivity in the near-infrared region.Our study provides a deeper understanding of the ultrafast electrical response in van der Waals heterojunctions and offers a promising approach for the realization of photodetectors with both high responsivity and ultrafast electrical response.展开更多
Carbon dioxide(CO_(2))can be reduced to high-value fuels using the photocatalysis(PC)technique,which holds immense potential for tackling environmental issues and energy crises.The construction of metalfree photocatal...Carbon dioxide(CO_(2))can be reduced to high-value fuels using the photocatalysis(PC)technique,which holds immense potential for tackling environmental issues and energy crises.The construction of metalfree photocatalyst capable of utilizing infrared light to execute thermal-assisted photocatalysis(TPC)remains a challenge.In this study,reduced graphene oxide(RGO)with full-spectrum absorption was used as a thermal-assisted photocatalyst in CO_(2) reduction.It exhibited higher CO_(2) reduction efficiency under the visible and infrared irradiation than the sole visible irradiation.RGO-5(GO treated at 120℃ for 5 h)presented the highest defect density and C-OH/C-O-C content,leading to the best PC and TPC efficiencies.RGO was further engineered with HCl protonated g-C_(3)N_(4)(H-CN) to obtain two-dimensional heterojunction RGO/H-CN,which demonstrated the S-scheme charge transfer process.Owing to the synergistic effect of heterojunction and thermal assistance,RGO/H-CN exhibited better CO_(2) reduction efficiencies in both PC and TPC than RGO.The largest yields of CO and CH4 were achieved in 15%RGO/H-CN.This research provides new insights for applying RGO as thermal-assisted heterojunction photocatalyst for efficient CO_(2) reduction.展开更多
Bi_(2)O_(2)CO_(3)(BOC)/Bi_(4)O_5Br_(2)(BOB)/reduced graphene oxide(rGO)Z-scheme heterojunction with promising photocatalytic properties was synthesized via a facile one-pot room-temperature method.Ultra-thin nanosheet...Bi_(2)O_(2)CO_(3)(BOC)/Bi_(4)O_5Br_(2)(BOB)/reduced graphene oxide(rGO)Z-scheme heterojunction with promising photocatalytic properties was synthesized via a facile one-pot room-temperature method.Ultra-thin nanosheets of BOC and BOB were grown in situ on r GO.The formed 2D/2D direct Z-scheme heterojunction of BOC/BOB with oxygen vacancies(OVs)effectively leads to lower negative electron reduction potential of BOB as well as higher positive hole oxidation potential of BOC,showing improved reduction/oxidation ability.Particularly,rGO is an acceptor of the electrons from the conduction band of BOC.Its dual roles significantly improve the transfer performance of photo-induced charge carriers and accelerate their separation.With layered nanosheet structure,rich OVs,high specific surface area,and increased utilization efficiency of visible light,the multiple synergistic effects of BOC/BOB/rGO can achieve effective generation and separation of the electron-holes,thereby generating more·O_(2)^(-)and h^(+).The photocatalytic reduction efficiency of CO_(2)to CO(12.91μmol/(g·hr))is three times higher than that of BOC(4.18μmol/(g·hr)).Moreover,it also achieved almost 100%removal of Rhodamine B and cyanobacterial cells within 2 hours.展开更多
Recently,the issue of bacterial resistance has gotten worse because of the overuse of antibiotics.The newborn superbacteria,such as vancomycin-resistant bacteria,were hard to kill,inspiring researchers to find new way...Recently,the issue of bacterial resistance has gotten worse because of the overuse of antibiotics.The newborn superbacteria,such as vancomycin-resistant bacteria,were hard to kill,inspiring researchers to find new ways to kill the bacteria efficiently.TiO_(2) was used as an efficient photocatalyst for water split-ting and pollutant degradation.However,the weak efficiency limited the application to solve the drug-resistance problem.Consequently,the incorpora-tion of low-cost 0D carbon quantum dots(CQDs)and 2D graphene oxide(GO)was pursued to amplify the visible light absorption capabilities of TiO_(2) and thereby elevate its photocatalytic activity.After forming the heterogeneous interface of CQDs and TiO_(2),CQDs converted part of visible light into wave-length less than 400 nm using the up-conversion property.The modification of CQDs enabled electrons to be easily transferred from the conduction band of CQDs to the conduction band of TiO_(2).Meanwhile,GO can act as an electron acceptor,reduce the recombination efficiency of holes and electrons,and transfer the photogenerated electrons in the redox reaction in the heterogeneous interface.Because of the excellent absorption of GO,TiO_(2)/CQDs/GO reached 57.8℃after 20 min irradiation under 1.5 times sunlight,which provided a prerequisite for photodynamic antibacterial therapy/photothermal antibacterial therapy synergistic antibacterial potential.TiO_(2)/CQDs/GO possessed an anti-bacterial efficiency as high as 99.3%toward Staphylococcus aureus which has a bright future in disinfection in vivo and medical devices as well as water sterilization.展开更多
Nitrogen dioxide(NO2),a hazardous gas with acidic nature,is continuously being liberated in the atmosphere due to human activity.The NO2 sensors based on traditional materials have limitations of high-temperature requ...Nitrogen dioxide(NO2),a hazardous gas with acidic nature,is continuously being liberated in the atmosphere due to human activity.The NO2 sensors based on traditional materials have limitations of high-temperature requirements,slow recovery,and performance degradation under harsh environmental conditions.These limitations of traditional materials are forcing the scientific community to discover future alternative NO2 sensitive materials.Molybdenum disulfide(MoS2)has emerged as a potential candidate for developing next-generation NO2 gas sensors.MoS2 has a large surface area for NO2 molecules adsorption with controllable morphologies,facile integration with other materials and compatibility with internet of things(IoT)devices.The aim of this review is to provide a detailed overview of the fabrication of MoS2 chemiresistance sensors in terms of devices(resistor and transistor),layer thickness,morphology control,defect tailoring,heterostructure,metal nanoparticle doping,and through light illumination.Moreover,the experimental and theoretical aspects used in designing MoS2-based NO2 sensors are also discussed extensively.Finally,the review concludes the challenges and future perspectives to further enhance the gas-sensing performance of MoS2.Understanding and addressing these issues are expected to yield the development of highly reliable and industry standard chemiresistance NO2 gas sensors for environmental monitoring.展开更多
Lithium sulfur(Li-S)batteries hold great promising for high-energy-density batteries,but appear rapid capacity fading due to the lack of overall and elaborated design of both sulfur host and interlayer.Herein,we devel...Lithium sulfur(Li-S)batteries hold great promising for high-energy-density batteries,but appear rapid capacity fading due to the lack of overall and elaborated design of both sulfur host and interlayer.Herein,we developed a novel two-dimensional(2D)hierarchical yolk-shell heterostructure,constructed by a graphene yolk,2D void and outer shell of vertically aligned carbon-mediated MoS2 nanosheets(G@void@MoS2/C),as advanced host-interlayer integrated electrode for Li-S batteries.Notably,the 2D void,with a typical thickness of^80 nm,provided suitable space for loading and confining nano sulfur,and vertically aligned ultrathin MoS2 nanosheets guaranteed enriched catalytically active sites to effectively promote the transition of soluble polysulfides.The conductive graphene yolk and carbon mediated shell sufficiently accelerated electron transport.Therefore,the integrated electrode of G@void@MoS2/C not only exceptionally confined the sulfur/polysulfides in 2D yolk-shell heterostructures,but also achieved catalytic transition of the residual polysulfides dissolved in electrolyte to solid Li2S2/Li2S,both of which synergistically achieved an extremely low capacity fading rate of 0.05%per cycle over 1000 times at 2C,outperforming most reported Mo based cathodes and interlayers for Li-S batteries.2D hierarchical yolkshell heterostructures developed here may shed new insight on elaborated design of integrated electrodes for Li-S batteries.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11202178)
文摘Based on the density functional calculations, the structural and electronic properties of the WS2/graphene heterojunction under different strains are investigated. The calculated results show that unlike the free mono-layer WS2, the monolayer WS2 in the equilibrium WS2/graphene heterojunctionis characterized by indirect band gap due to the weak van der Waals interaction. The height of the schottky barrier for the WS2/graphene heterojunction is 0.13 eV, which is lower than the conventional metal/MoS2 contact. Moreover, the band properties and height of schottky barrier for WS2/graphene heterojunction can be tuned by strain. It is found that the height of the schottky barrier can be tuned to be near zero under an in-plane compressive strain, and the band gap of the WS2 in the heterojunction is turned into a direct band gap from the indirect band gap with the increasing schottky barrier height under an in-plane tensile strain. Our calculation results may provide a potential guidance for designing and fabricating the WS2-based field effect transistors.
基金financially supported by the National Natural Science Foundation of China (Nos.U2002212,52102058,52204414,52204413,and 52204412)the National Key R&D Program of China (Nos.2021YFC1910504,2019YFC1907101,2019YFC1907103,and 2017YFB0702304)+7 种基金the Key R&D Program of Ningxia Hui Autonomous Region,China (Nos.2021BEG01003 and2020BCE01001)the Xijiang Innovation and Entrepreneurship Team,China (No.2017A0109004)the Macao Young Scholars Program (No.AM2022024),Chinathe Beijing Natural Science Foundation (Nos.L212020 and 2214073),Chinathe Guangdong Basic and Applied Basic Research Foundation,China (Nos.2021A1515110998 and 2020A1515110408)the China Postdoctoral Science Foundation (No.2022M710349)the Fundamental Research Funds for the Central Universities,China (Nos.FRF-BD-20-24A,FRF-TP-20-031A1,FRF-IC-19-017Z,and 06500141)the Integration of Green Key Process Systems MIIT and Scientific and Technological Innovation Foundation of Foshan,China(Nos.BK22BE001 and BK21BE002)。
文摘Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology regulation, and heterojunction construction strategies to synthesize N-GQD/N-doped TiO_(2)/P-doped porous hollow g-C_(3)N_(4) nanotube (PCN) composite photocatalysts (denoted as G-TPCN). The optimal sample (G-TPCN doped with 0.1wt% N-GQD, denoted as 0.1% G-TPCN) exhibits significantly enhanced photoabsorption, which is attributed to the change in bandgap caused by elemental doping (P and N), the improved light-harvesting resulting from the tube structure, and the upconversion effect of N-GQDs. In addition, the internal charge separation and transfer capability of0.1% G-TPCN are dramatically boosted, and its carrier concentration is 3.7, 2.3, and 1.9 times that of N-TiO_(2), PCN, and N-TiO_(2)/PCN(TPCN-1), respectively. This phenomenon is attributed to the formation of Z-scheme heterojunction between N-TiO_(2) and PCNs, the excellent electron conduction ability of N-GQDs, and the short transfer distance caused by the porous nanotube structure. Compared with those of N-TiO_(2), PCNs, and TPCN-1, the H2 production activity of 0.1%G-TPCN under visible light is enhanced by 12.4, 2.3, and 1.4times, respectively, and its ciprofloxacin (CIP) degradation rate is increased by 7.9, 5.7, and 2.9 times, respectively. The optimized performance benefits from excellent photoresponsiveness and improved carrier separation and migration efficiencies. Finally, the photocatalytic mechanism of 0.1% G-TPCN and five possible degradation pathways of CIP are proposed. This study clarifies the mechanism of multiple modification strategies to synergistically improve the photocatalytic performance of 0.1% G-TPCN and provides a potential strategy for rationally designing novel photocatalysts for environmental remediation and solar energy conversion.
基金supported by the National Natural Science Foundation of China(51502155,51572152,21673127,21671119)the Research Project of Hubei Provincial Department of Education(D20151203)the State Key Laboratory of Structural Chemistry,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences(20170020)~~
文摘Willow branch-shaped MoS2/CdS heterojunctions are successfully synthesized for the first time by a facile one-pot hydrothermal method. The as-prepared samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption measurements, diffuse reflectance spectroscopy, and photoelectrochemical and photoluminescence spectroscopy tests. The photocatalytic hydrogen evolution activities of the samples were evaluated under visible light irradiation. The resulting MoS2/CdS heterojunctions exhibit a much improved photocatalytic hydrogen evolution activity than that obtained with CdS and MoS2. In particular, the optimized MC-5 (5 at.% MoS2/CdS) photocatalyst achieved the highest hydrogen production rate of 250.8 μmol h–1, which is 28 times higher than that of pristine CdS. The apparent quantum efficiency (AQE) at 420 nm was 3.66%. Further detailed characterizations revealed that the enhanced photocatalytic activity of the MoS2/CdS heterojunctions could be attributed to the efficient transfer and separation of photogenerated charge carriers resulting from the core-shell structure and the close contact between MoS2 nanosheets and CdS single-crystal nanorods, as well as to increased visible light absorption. A tentative mechanism for photocatalytic H2 evolution by MoS2/CdS heterojunctions was proposed. This work will open up new opportunities for developing more efficient photocatalysts for water splitting.
基金supported by the National Natural Science Foundation of China (Grant Nos.51290271,51672314)the Guangdong Natural Science Foundation (Grant No.2016A030313359)+2 种基金the Science and Technology Program of Guangzhou (Grant No.201707010224)the Science and Technology Department of Guangdong Provincethe Fundamental Research Funds for the Central Universities
文摘Transition-metal dichalcogenide(TMD) semiconductors have attracted interest as photoelectrochemical(PEC) electrodes due to their novel band-gap structures,optoelectronic properties, and photocatalytic activities.However, the photo-harvesting efficiency still requires improvement. In this study, A TMD stacked heterojunction structure was adopted to further enhance the performance of the PEC cathode. A P-type WSe_2 and an N-type Mo S_2 monolayer were stacked layer-by-layer to build a ultrathin vertical heterojunction using a micro-fabrication method.In situ measurement was employed to characterize the intrinsic PEC performance on a single-sheet heterostructure.Benefitting from its built-in electric field and type II band alignment, the MoS_2/WSe_2 bilayer heterojunction exhibited exceptional photocatalytic activity and a high incident photo-to-current conversion efficiency(IPCE). Comparing with the monolayer WSe_2 cathode, the PEC current and the IPCE of the bilayer heterojunction increased by a factor of 5.6 and enhanced 50%, respectively. The intriguing performance renders the MoS_2/WSe_2 heterojunction attractive for application in high-performance PEC water splitting.
基金the National Natural Science Foundation of China(31430092,21736003)Guangdong Natural Science Funds for Distinguished Young Scholar(2016A030306027,2017A030306029)+2 种基金Guangdong Natural Science Funds(2017A030313130)Guangzhou science and technology funds(201904010078)State Key Laboratory of Pulp and Paper Engineering and Fundamental Research Funds for the Central Universities。
文摘The design and development of electrocatalysts composed of non-noble-metal catalysts with both large surface area and high electrical conductivities are crucial for the hydrogen evolution reaction(HER).Here,a xylose-based porous carbon is coupled with a MoS2-Mo P heterojunction(MoS2-Mo P/FPC)hybrid and used as a promising catalyst for HER.The hybrid is prepared by immobilizing petal-like MoS2 nanosheets on porous carbon(MoS2/FPC),followed by controlling the phosphidation in Ar/H2 to form MoS2-Mo P/FPC.Red phosphorus provides the P species that can induce the construction of the heterojunction under the reducing atmosphere,along with the generation of a Mo P phase and the splitting of the MoS2 phase.The as-prepared MoS2-Mo P/FPC catalyst offers a low overpotential of 144 mV at a current density of 10 m A cm^-2 and a small Tafel slope of 41 m V dec^-1 for the HER in acidic media,as well as remarkable stability.Apart from the active nature of the hybrid,its outstanding activity is attributed to the MoS2-Mo P heterojunction,and the good charge/mass-transfer ability of porous carbon.This strategy provides a new method to develop and design low-cost and high-performance catalysts for the HER.
基金support of this research by the National Natural Science Foundation of China(21871078)the Natural Science Foundation of Heilongjiang Province(JQ2019B001 and B2018010)+3 种基金the Heilongjiang Postdoctoral Startup Fund(LBH-Q14135)the Heilongjiang University Science Fund for Distinguished Young Scholars(JCL201802)the Heilongjiang Provincial Institutions of Higher Learning Basic Research Funds Basic Research Projects(KJCX201909)the Heilongjiang Touyan Innovation Team Program.
文摘3D flower-like hierarchical mesoporous Bi_(4)O_(5)I_(2)/MoS_(2)Z-scheme layered heterojunction photocatalyst was fabricated by oil bath and hydrothermal methods.The heterojunction with narrow band gap of~1.95 eV extended the photoresponse to near-infrared region,which showed obvious photothermal effect due to the introduction of MoS_(2) with broad spectrum response.MoS_(2) nanosheets were anchored onto the surface of flower-like hierarchical mesoporous Bi_(4)O_(5)I_(2) nanosheets,thereby forming efficient layered heterojunctions,the solar-driven photocatalytic efficiency in degradation of highly toxic dichlorophenol and reduction of hexavalent chromium was improved to 98.5%and 99.2%,which was~4 and 7 times higher than that of the pristine Bi_(4)O_(5)I_(2),respectively.In addition,the photocatalytic hydrogen production rate reached 496.78 μmol h^(-1)g^(-1),which was~6 times higher than that of the pristine Bi_(4)O_(5)I_(2).The excellent photocatalytic performance can be ascribed to the promoted photothermal effect,as well as,the formation of compact Z-scheme layered heterojunctions.The 3D flower-like hierarchical mesoporous structure provided adequate surface active-sites,which was conducive to the mass transfer.Moreover,the high stability of the prepared photocatalyst further promoted its potential practical application.This strategy also provides new insights for fabricating layered Zscheme heterojunctions photocatalysts with highly photothermal-photocatalytic efficiency.
基金Project supported by the National Basic Research Program of China(Grant Nos.2016YFA0202300 and 2016YFA0202302)the National Natural Science Foundation of China(Grant Nos.61527817,61335006,and 61378073)the Overseas Expertise Introduction Center for Discipline Innovation,111 Center,China
文摘The substrate treatment with seeding promoter can promote the two-dimensional material lateral growth in chemical vapor deposition (CVD) process. Herein, graphene quantum dots (GQDs) as a novel seeding promoter were used to obtain uniform large-area MoS2 monolayer. The obtained monolayer MoS2 films were confirmed by optical microscope, scanning electron microscope, Raman and photoluminescence spectra. Raman mapping revealed that the MoS2 monolayer was largely homogeneous.
基金financially supported by the National Key R & D Projects (Nos. 2021YFC1910504, 2019YFC1907101, 2019YFC1907103, and 2017YFB0702304)the Key R & D Project in Ningxia Hui Autonomous Region, China (No. 2020BCE01001)+6 种基金the Key and Normal Projects National Natural Science Foundation of China (Nos. U2002212 and 51672024)the Xijiang Innovation and Entrepreneurship Team (No. 2017A0109004)the Fundamental Research Funds for the Central Universities (Nos. FRF-BD-20-24A, FRF-TP-20-031A1, FRF-IC-19-017Z, FRF-GF-19-032B, and 06500141)the Integration of Green Key Process Systems MIIT, Natural Science Foundation of Beijing Municipality (No. 2214073)the Guangdong Basic and Applied Research Foundation, China (No. 2020A1515110408)the Foshan Science and Technology Innovation Special Foundation, China (No. BK21BE002)the Postdoctor Research Foundation of Shunde Graduate School of University of Science and Technology Beijing (No. 2020BH004)
文摘TiO_(2)is the dominant and most widely researched photocatalyst for environmental remediation,however,the drawbacks,such as only responding to UV light(<5%of sunlight),low charge separation efficiency,and difficulties in recycling,have severely hindered its practical application.Herein,we synthesized magnetically separable Fe_(3)O_(4)@MoS_(2)@mesoporous TiO_(2)(FMmT)photocatalysts via a simple,green,and template-free solvothermal method combined with ultrasonic hydrolysis.It is found that FMmT possesses a high specific surface area(55.09 m2·g−1),enhanced visible-light responsiveness(~521 nm),and remarkable photogenerated charge separation efficiency.In addition,the photocatalytic degradation efficiencies of FMmT for methylene blue(MB),rhodamine B(RhB),and tetracycline(TC)are 99.4%,98.5%,and 89.3%within 300 min,respectively.The corresponding degradation rates are 4.5,4.3,and 3.1 times higher than those of pure TiO_(2)separately.Owing to the high saturation magnetization(43.1 A·m^(2)·kg^(−1)),FMmT can achieve effective recycling with an applied magnetic field.The improved photocatalytic activity is closely related to the effective transport of photogenerated electrons by the active interlayer MoS_(2) and the electron–hole separation caused by the MoS_(2)@TiO_(2)heterojunction.Meanwhile,the excellent light-harvesting ability and abundant reactive sites of the mesoporous TiO_(2)shell further boost the photocatalytic efficiency of FMmT.This work provides a new approach and some experimental basis for the design and performance improvement of magnetic photocatalysts by innovatively incorporating MoS2 as the active interlayer and integrating it with a mesoporous shell.
基金financially supported by the Natural Science Foundation of China (Grant No.21473093)Fundamental Research Funds for the Central Universities and Tianjin Research Program of Application Foundation and Advanced Technology (Grant No.14JCYBJC41300)Ph.D. Candidate Research Innovation Fund of Nankai University
文摘MoS_2 has attracted attention as a promising hydrogen evolution reaction(HER) catalyst and a supercapacitor electrode material. However, its catalytic activity and capacitive performance are still hindered by its aggregation and poor intrinsic conductivity. Here, hollow rGO sphere-supported ultrathin MoS_2 nanosheet arrays(hrGO@MoS_2) are constructed via a dual-template approach and employed as bifunctional HER catalyst and supercapacitor electrode material. Because of the expanded interlayer spacing in MoS_2 nanosheets and more exposed electroactive S–Mo–S edges, the constructed h-rGO@MoS_2 architectures exhibit enhanced HER performance. Furthermore, benefiting from the synergistic effect of the improved conductivity and boosted specific surface areas(144.9 m^2 g^(-1), ca. 4.6-times that of pristine MoS_2), the h-rGO@MoS_2 architecture shows a high specific capacitance(238 F g^(-1) at a current density of 0.5 A g^(-1)), excellent rate capacitance, and remarkable cycle stability. Our synthesis method may be extended to construct other vertically aligned hollow architectures,which may serve both as efficient HER catalysts and supercapacitor electrodes.
基金This research was supported by Shanghai Pujiang Program(21PJD022)National Natural Science Foundation of China(21901154).
文摘The hydrogen evolution reaction performance of semiconducting 2H-phase molybdenum disulfide(2H-MoS_(2))presents a significant hurdle in realizing its full potential applications.Here,we utilize theoretical calculations to predict possible functionalized graphene quantum dots(GQDs),which can enhance HER activity of bulk MoS_(2).Subsequently,we design a functionalized GQD-induced in-situ bottom-up strategy to fabricate near atom-layer 2H-MoS_(2) nanosheets mediated with GQDs(ALQD)by modulating the concentration of electron withdrawing/donating functional groups.Experimental results reveal that the introduction of a series of functionalized GQDs during the synthesis of ALQD plays a crucial role.Notably,the higher the concentration and strength of electron-withdrawing functional groups on GQDs,the thinner and more active the resulting ALQD are.Remarkably,the synthesized near atom-layer ALQD-SO_(3)demonstrate significantly improved HER performance.Our GQD-induced strategy provides a simple and efficient approach for expanding the catalytic application of MoS_(2).Furthermore,it holds substantial potential for developing nanosheets in other transition-metal dichalcogenide materials.
基金Funded by the National Natural Science Foundation of China(No.21503096)
文摘MoS_2-decorated C_3N_4(C_3N_4/MoS_2) nanosheets hybrid photocatalysts were prepared by a simple sonication-impregnation method. Face-to-face lamellar heterojunctions were well established between two dimension(2D) C_3N_4 and MoS_2 nanosheets. The effects of MoS_2 content on the light absorption, charge transfer and photocatalytic activity of the hybrid samples were investigated. Characterization results show that MoS_2 nanosheets are well anchored on the face of C_3N_4 nanosheets and the composites have well dispersed layered morphology. After loading with MoS_2, the light absorption of composites was much improved, especially in visible-light region. The photocatalytic activities of C_3N_4/MoS_2 samples were evaluated based on the H_2 evolution under visible light irradiation(λ > 400 nm). When the loading amount of MoS_2 was increased to 5 wt%, the highest H_2 evolution rate(274 μmol·g^(-1)·h^(-1)) was obtained. Compared with samples obtained from direct impregnation method, sonication pretreatment is favorable for the formation of 2D layered heterojuctions and thus improve the photocatalytic activity. Slightly deactivation of C_3N_4/MoS_2 composites could be observed when recycled due to the mild photocorrosion of MoS_2. Based on the band alignments of C_3N_4 and MoS_2, a possible photocatalytic mechanism was discussed, where MoS_2 could efficiently promote the separation of the photogenerated carriers of C_3N_4.
基金Project supported by the National Key R&D Program,China(Grant No.2016YFA0300904)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(Grant No.QYZDB-SSW-SLH004)+1 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant Nos.XDPB06 and XDB07010100)the National Natural Science Foundation of China(Grant Nos.61734001 and 51572289)
文摘Two-dimensional(2D) materials and their heterostructures have attracted a lot of attention due to their unique electronic and optical properties. MoS_2 as the most typical 2D semiconductors has great application potential in thin film transistors, photodetector, hydrogen evolution reaction, memory device, etc. However, the performance of MoS_2 devices is limited by the contact resistance and the improvement of its contact quality is important. In this work, we report the experimental investigation of pressure-enhanced contact quality between monolayer MoS_2 and graphite by conductive atom force microscope(C-AFM). It was found that at high pressure, the contact quality between graphite and MoS_2 is significantly improved. This pressure-mediated contact quality improvement between MoS_2 and graphite comes from the enhanced charge transfer between MoS_2 and graphite when MoS_2 is stretched. Our results provide a new way to enhance the contact quality between MoS_2 and graphite for further applications.
基金support from the National Basic Research Program of China(No.2016YFA0200101)the National Natural Science Foundation of China(Nos.21733001 and 21525310)Boya Postdoctoral Fellowship.
文摘The formation of heterojunction within solid-state devices enables them with eventually high performances,but provides a challenge for material synthesis and device fabrication because strict conditions such as lattice match are needed.Herein,we show a facile method to fabricate a van der Waals(vdW)heterojunction between two-dimensional(2D)bismuth oxyselenide(Bi2O2Se)and graphene,during which the graphene is directly transferred to the Bi2O2Se and served as a lowcontract-resistant electrode with small work function mismatch(~50 meV).As an optoelectronic device,the Bi2O2Se/graphene vdW heterojunction allows for the efficient sensing toward 1200-nm incident laser.Regarding the application of fieldeffect transistors(FETs),the short-channel(50 nm)sample can be synthesized by utilizing these two 2D materials(ie,channel:Bi2O2Se;drain/source terminal:graphene)and the n-type characteristic can be observed with the accordant field modulation.It is confirmed that we show a simple way to prepare the vdW heterojunction which is aiming to the high-performance applications among optoelectronics and FETs.
基金This work was financially supported by the National Natural Science Foundation of China(NSFC)(Nos.11974182 and 11874220)Fundamental Research Funds for the Central Universities(No.NC2022008)Funding for Outstanding Doctoral Dissertation in NUAA(No.BCXJ22-14).
文摘Graphene monolayer has been extensively applied as a transparency electrode material in photoelectronic devices due to its high transmittance,high carrier mobility,and ultrafast carrier dynamics.In this study,a high-performance self-powered photodetector,which is made of a SnO_(2)microwire,p-type GaN film,and monolayer graphene transparent electrode,was proposed and fabricated.The detector is sensitive to ultraviolet light signals and illustrates pronounced detection performances,including a peak respon-sivity∼223.7 mA W^(-1),a detectivity∼6.9×10^(12)Jones,fast response speed(rising/decaying times∼18/580μs),and excellent external quantum efficiency∼77%at 360 nm light illumination without exter-nal power supply.Compared with the pristine SnO_(2)/GaN photodetector using ITO electrode,the device performances of responsivity and detectivity are significantly increased over 6×10^(3)%and 3×10^(3)%,respectively.The performance-enhanced characteristics are mainly attributed to the high-quality het-erointerface of n-SnO_(2)/p-GaN,the highly conductive capacity,and the unique transparency of graphene electrodes.Particularly,the built-in potential formed at the SnO_(2)/GaN heterojunction interface could be strengthened by the Schottky potential barrier derived from the graphene electrode and SnO_(2)wire,en-hancing the carrier collection efficiency through graphene as a charge collection medium.This work is of great importance and significance to developing excellent-performance ultraviolet photodetectors for photovoltaic and optoelectronic applications in a self-powered operation manner.
基金This work was supported by the National Natural Science Foundation of China(Grants No.52022029,91850116,51772084,and U19A2090)the Sino-German Center for Research Promotion(Grant No.GZ1390)the Hunan Provincial Natural Science Foundation of China(Grants No.2018RS3051 and 2019XK2001)。
文摘Understanding the fundamental charge carrier dynamics is of great significance for photodetectors with both high speed and high responsivity.Devices based on two-dimensional(2D)transition metal dichalcogenides can exhibit picosecond photoresponse speed.However,2D materials naturally have low absorption,and when increasing thickness to gain higher responsivity,the response time usually slows to nanoseconds,limiting their photodetection performance.Here,by taking time-resolved photocurrent measurements,we demonstrated that graphene/MoTe_(2) van der Waals heterojunctions realize a fast 10 ps photoresponse time owing to the reduced average photocurrent drift time in the heterojunction,which is fundamentally distinct from traditional Dirac semimetal photodetectors such as graphene or Cd_(3)As_(2) and implies a photodetection bandwidth as wide as 100 GHz.Furthermore,we found that an additional charge carrier transport channel provided by graphene can ef-fectively decrease the photocurrent recombination loss to the entire device,preserving a high responsivity in the near-infrared region.Our study provides a deeper understanding of the ultrafast electrical response in van der Waals heterojunctions and offers a promising approach for the realization of photodetectors with both high responsivity and ultrafast electrical response.
基金financial support provided by the National Natural Science Foundation of China(Nos.41961134034,42293324,and 21876003)the National Key Research and Development Program of China(No.2022YFC3701104)the Second Tibetan Plateau Scientific Expedition and Research(No.2019QZKK0607).
文摘Carbon dioxide(CO_(2))can be reduced to high-value fuels using the photocatalysis(PC)technique,which holds immense potential for tackling environmental issues and energy crises.The construction of metalfree photocatalyst capable of utilizing infrared light to execute thermal-assisted photocatalysis(TPC)remains a challenge.In this study,reduced graphene oxide(RGO)with full-spectrum absorption was used as a thermal-assisted photocatalyst in CO_(2) reduction.It exhibited higher CO_(2) reduction efficiency under the visible and infrared irradiation than the sole visible irradiation.RGO-5(GO treated at 120℃ for 5 h)presented the highest defect density and C-OH/C-O-C content,leading to the best PC and TPC efficiencies.RGO was further engineered with HCl protonated g-C_(3)N_(4)(H-CN) to obtain two-dimensional heterojunction RGO/H-CN,which demonstrated the S-scheme charge transfer process.Owing to the synergistic effect of heterojunction and thermal assistance,RGO/H-CN exhibited better CO_(2) reduction efficiencies in both PC and TPC than RGO.The largest yields of CO and CH4 were achieved in 15%RGO/H-CN.This research provides new insights for applying RGO as thermal-assisted heterojunction photocatalyst for efficient CO_(2) reduction.
基金supported by the National Natural Science Foundation of China(Nos.51602281 and 52100014)the Natural Science Foundation of Jiangsu Province(No.BK20180938)the Yangzhou University High-end Talent Support Program and the“Qinglan Project”of Jiangsu Universities。
文摘Bi_(2)O_(2)CO_(3)(BOC)/Bi_(4)O_5Br_(2)(BOB)/reduced graphene oxide(rGO)Z-scheme heterojunction with promising photocatalytic properties was synthesized via a facile one-pot room-temperature method.Ultra-thin nanosheets of BOC and BOB were grown in situ on r GO.The formed 2D/2D direct Z-scheme heterojunction of BOC/BOB with oxygen vacancies(OVs)effectively leads to lower negative electron reduction potential of BOB as well as higher positive hole oxidation potential of BOC,showing improved reduction/oxidation ability.Particularly,rGO is an acceptor of the electrons from the conduction band of BOC.Its dual roles significantly improve the transfer performance of photo-induced charge carriers and accelerate their separation.With layered nanosheet structure,rich OVs,high specific surface area,and increased utilization efficiency of visible light,the multiple synergistic effects of BOC/BOB/rGO can achieve effective generation and separation of the electron-holes,thereby generating more·O_(2)^(-)and h^(+).The photocatalytic reduction efficiency of CO_(2)to CO(12.91μmol/(g·hr))is three times higher than that of BOC(4.18μmol/(g·hr)).Moreover,it also achieved almost 100%removal of Rhodamine B and cyanobacterial cells within 2 hours.
基金supported by the China National Funds for Distinguished Young Scientists(No.51925104)the National Natural Science Foundation of China(NSFC)(No.52173251)+3 种基金NSFC-Guangdong Province Joint Program(Key program No.U21A2084)Yanzhao Young Scientist Project(No.C2023202018)Beijing Natural Science Foundation(No.7232338)the Central Guidance on Local Science and Technology Development Fund of Hebei Province(No.226Z1303G).
文摘Recently,the issue of bacterial resistance has gotten worse because of the overuse of antibiotics.The newborn superbacteria,such as vancomycin-resistant bacteria,were hard to kill,inspiring researchers to find new ways to kill the bacteria efficiently.TiO_(2) was used as an efficient photocatalyst for water split-ting and pollutant degradation.However,the weak efficiency limited the application to solve the drug-resistance problem.Consequently,the incorpora-tion of low-cost 0D carbon quantum dots(CQDs)and 2D graphene oxide(GO)was pursued to amplify the visible light absorption capabilities of TiO_(2) and thereby elevate its photocatalytic activity.After forming the heterogeneous interface of CQDs and TiO_(2),CQDs converted part of visible light into wave-length less than 400 nm using the up-conversion property.The modification of CQDs enabled electrons to be easily transferred from the conduction band of CQDs to the conduction band of TiO_(2).Meanwhile,GO can act as an electron acceptor,reduce the recombination efficiency of holes and electrons,and transfer the photogenerated electrons in the redox reaction in the heterogeneous interface.Because of the excellent absorption of GO,TiO_(2)/CQDs/GO reached 57.8℃after 20 min irradiation under 1.5 times sunlight,which provided a prerequisite for photodynamic antibacterial therapy/photothermal antibacterial therapy synergistic antibacterial potential.TiO_(2)/CQDs/GO possessed an anti-bacterial efficiency as high as 99.3%toward Staphylococcus aureus which has a bright future in disinfection in vivo and medical devices as well as water sterilization.
基金the Department of Atomic Energy(DAE)under Project No.34/20/09/2015/BRNSthe Department of Physics,IIT Ropar for providing financial support and the research facility。
文摘Nitrogen dioxide(NO2),a hazardous gas with acidic nature,is continuously being liberated in the atmosphere due to human activity.The NO2 sensors based on traditional materials have limitations of high-temperature requirements,slow recovery,and performance degradation under harsh environmental conditions.These limitations of traditional materials are forcing the scientific community to discover future alternative NO2 sensitive materials.Molybdenum disulfide(MoS2)has emerged as a potential candidate for developing next-generation NO2 gas sensors.MoS2 has a large surface area for NO2 molecules adsorption with controllable morphologies,facile integration with other materials and compatibility with internet of things(IoT)devices.The aim of this review is to provide a detailed overview of the fabrication of MoS2 chemiresistance sensors in terms of devices(resistor and transistor),layer thickness,morphology control,defect tailoring,heterostructure,metal nanoparticle doping,and through light illumination.Moreover,the experimental and theoretical aspects used in designing MoS2-based NO2 sensors are also discussed extensively.Finally,the review concludes the challenges and future perspectives to further enhance the gas-sensing performance of MoS2.Understanding and addressing these issues are expected to yield the development of highly reliable and industry standard chemiresistance NO2 gas sensors for environmental monitoring.
基金financially supported by the National Key R@D Program of China (Grants 2016YBF0100100 and 2016YFA0200200)the National Natural Science Foundation of China (Grants 51572259 and 51872283)+5 种基金LiaoNing Revitalization Talents Program (Grant XLYC1807153)the Natural Science Foundation of Liaoning Province (Grant 20180510038)DICP (DICP ZZBS201708, DICP ZZBS201802)DICP&QIBEBT (Grant DICP&QIBEBT UN201702)Dalian National Laboratory For Clean Energy (DNL), CAS, DNL Cooperation Fund, CAS (DNL180310, DNL180308)the Fundamental Research Funds for the Central Universities of China (Grant N180503012 and N172410002-16)
文摘Lithium sulfur(Li-S)batteries hold great promising for high-energy-density batteries,but appear rapid capacity fading due to the lack of overall and elaborated design of both sulfur host and interlayer.Herein,we developed a novel two-dimensional(2D)hierarchical yolk-shell heterostructure,constructed by a graphene yolk,2D void and outer shell of vertically aligned carbon-mediated MoS2 nanosheets(G@void@MoS2/C),as advanced host-interlayer integrated electrode for Li-S batteries.Notably,the 2D void,with a typical thickness of^80 nm,provided suitable space for loading and confining nano sulfur,and vertically aligned ultrathin MoS2 nanosheets guaranteed enriched catalytically active sites to effectively promote the transition of soluble polysulfides.The conductive graphene yolk and carbon mediated shell sufficiently accelerated electron transport.Therefore,the integrated electrode of G@void@MoS2/C not only exceptionally confined the sulfur/polysulfides in 2D yolk-shell heterostructures,but also achieved catalytic transition of the residual polysulfides dissolved in electrolyte to solid Li2S2/Li2S,both of which synergistically achieved an extremely low capacity fading rate of 0.05%per cycle over 1000 times at 2C,outperforming most reported Mo based cathodes and interlayers for Li-S batteries.2D hierarchical yolkshell heterostructures developed here may shed new insight on elaborated design of integrated electrodes for Li-S batteries.