The selective oxidation of 5-hydroxymethylfurfural(HMF) into 2,5-diformylfuran(DFF) is an important reaction for renewable biomass building blocks. Compared with thermal catalytic processes, photocatalytic production ...The selective oxidation of 5-hydroxymethylfurfural(HMF) into 2,5-diformylfuran(DFF) is an important reaction for renewable biomass building blocks. Compared with thermal catalytic processes, photocatalytic production of DFF from HMF has attracted tremendous attention. Herein, the MoS_(2)/CdIn_(2)S_(4)(MC)flower-like heterojunctions were prepared and considered as photocatalysts for selective oxidation of HMF into DFF under visible-light irradiation in aqueous solution. Results demonstrated MoS_(2) in MC heterojunction could promote the separation of photoexcited electron-hole pairs, while the amount of MoS_(2) dropping was proved influenced on the photocatalytic performance. 80.93% of DFF selectivity was realized when using 12.5% MC as photocatalyst. In addition, the MC catalyst also showed great potential in transformation of other biomass derived benzyl-and furyl-alcohols. The catalytic mechanism suggested that ·O_(2)^(-) was the decisive active radical for HMF oxidation. Therefore, the MC heterojunction could be applied in photocatalytic conversion of biomass to valuable chemicals under ambient condition.展开更多
It is of vital importance to design efficient and low-cost bifunctional catalysts for the electrochemical water splitting under alkaline and neutral pH conditions.In this work,we report an efficient and stable NiCo_(2...It is of vital importance to design efficient and low-cost bifunctional catalysts for the electrochemical water splitting under alkaline and neutral pH conditions.In this work,we report an efficient and stable NiCo_(2)S_(4)/N,S co-doped reduced graphene oxide(NCS/NS-rGO)electrocatalyst for water splitting,in which NCS microspheres are composed of one-dimentional(1D)nanorods grown homogeneously on the surface of NS-rGOs).The synergetic effect,abundant active sites,and hybridization of NCS/NS-rGO endow their outstanding electrocatalytic performance for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)in both alkaline and neutral conditions.Furthermore,NCS/NS-rGO employed as both anode and cathode in a two-electrode alkaline and neutral system electrolyzers deliver 10 mA/cm^(2) with the low cell voltage of 1.58 V in alkaline and 1.91 V in neutral condition.These results illustrate the rational design of carbon-supported nickel-cobalt based bifunctional materials for practical water splitting over a wide pH range.展开更多
Achieving hydrogen production and simultaneous decomposition of organic pollutants through dual-functional photocatalytic reactions has received increasing attention due to the environmentally friendly and cost-effect...Achieving hydrogen production and simultaneous decomposition of organic pollutants through dual-functional photocatalytic reactions has received increasing attention due to the environmentally friendly and cost-effective characteristics of this approach.In this work,an urchin-like oxygen-doped MoS_(2)/ZnIn_(2)S_(4)(OMS/ZIS)composite was fabricated for the first time using a simple solvothermal method.The unique microstructure with abundant active sites and fast charge transfer channels further shortened the charge migration distance and compressed carrier recombination.The obtained composite exhibited an efficient H2 evolution reaction rate of 12.8 mmol/g/h under visible light,which was nearly times higher than pristine ZnIn_(2)S_(4),and the apparent quantum efficiency was 14.9%(420 nm).The results of the simultaneous photocatalytic H2 evolution and organic pollutant decomposition test were satisfactory,resulting in decomposition efficiencies of resorcinol,tetracycline,and bisphenol A that reached 41.5%,63.5%,and 53.0%after 4 h,respectively,and the highest H2 evolution rate was 672.7 umol/g/h for bisphenol A.Furthermore,natural organic matter(NOM)abundantly found in actual water was adopted as an electron donor for H production under simulated sunlight irradiation,indicating the promising practicability of simultaneous hydrogen evolution and NOM decomposition.Moreover,the mechanisms of the dual-purpose photocatalytic reactions,as well as the synergistic effect between the molecular structures of the organic pollutants and the corresponding adsorption behavior on the photocatalyst surface were illustrated in detail.These obtained results may serve as an inspiration for the rational design of highly efficient,dual-functional photocatalysts in the future.展开更多
As a highly toxic heavy metal,Cr(VI)reduction by developing high-efficiency photocatalysts is of great significance.Herein,we firstly design few-layer Ti_(3)C_(2) MXene(FTM)by the hand-operated shaking,show-ing dual a...As a highly toxic heavy metal,Cr(VI)reduction by developing high-efficiency photocatalysts is of great significance.Herein,we firstly design few-layer Ti_(3)C_(2) MXene(FTM)by the hand-operated shaking,show-ing dual advantages of structural stability and more exposed reactive sites.Then,a refluxed process is performed to fabricate FTM/CaIn_(2)S_(4)(FTC) composites,where 2D CaIn_(2)S_(4)(CIS) nanoplates are closely con-nected with 2D FTM to form Schottky junction.The optimal 1-FTC with the FTM/CIS mass ratio of 1 wt.%exhibits the highest activity toward photocatalytic Cr(VI)reduction under visible light.It is well eluci-dated that the broadened light absorption range and promoted charge carrier separation rate induced by the introduction of FTM are responsible for improving photocatalytic activity of CIS.During Cr(VI)photoreduction,1-FTC possesses excellent photo-stability and reusability.The effects of catalyst mass,co-existing ions,water sources and pH values on the Cr(VI)photoreduction efficiency are investigated.Pho-togenerated•O_(2)^(−)and e−are the main radical species accounting for Cr(VI)photoreduction over 1-FTC.The photocatalytic mechanism along with Cr(VI)removal pathway is exploited.This work may provide some insights into constructing FTM-based Schottky junctions for the efficient water purification.展开更多
Crystalline@amorphous NiCo_(2)S_(4)@MoS_(2)(v-NCS@MS)nanostructures were designed and constructed via an ethylene glycol-induced strategy with hydrothermal synthesis and solvothermal method,which simultaneously realiz...Crystalline@amorphous NiCo_(2)S_(4)@MoS_(2)(v-NCS@MS)nanostructures were designed and constructed via an ethylene glycol-induced strategy with hydrothermal synthesis and solvothermal method,which simultaneously realized the defect regulation of crystal NiCo_(2)S_(4) in the core.Taking advantage of the flexible protection of an amor-phous shell and the high capacity of a conductive core with defects,the v-NCS@MS electrode exhibited high specif-ic capacity(1034 mAh·g^(-1) at 1 A·g^(-1))and outstanding rate capability.Moreover,a hybrid supercapacitor was assembled with v-NCS@MS as cathode and activated carbon(AC)as anode,which can achieve remarkably high specific energy of 111 Wh·kg^(-1) at a specific power of 219 W·kg^(-1) and outstanding capacity retention of 80.5%after 15000 cycling at different current densities.展开更多
基金funded by the National Key Research and Development Program of China ( 2018YFB1501704)the National Natural Science Foundation of China (22078018)the Beijing Natural Science Foundation (2222016)。
文摘The selective oxidation of 5-hydroxymethylfurfural(HMF) into 2,5-diformylfuran(DFF) is an important reaction for renewable biomass building blocks. Compared with thermal catalytic processes, photocatalytic production of DFF from HMF has attracted tremendous attention. Herein, the MoS_(2)/CdIn_(2)S_(4)(MC)flower-like heterojunctions were prepared and considered as photocatalysts for selective oxidation of HMF into DFF under visible-light irradiation in aqueous solution. Results demonstrated MoS_(2) in MC heterojunction could promote the separation of photoexcited electron-hole pairs, while the amount of MoS_(2) dropping was proved influenced on the photocatalytic performance. 80.93% of DFF selectivity was realized when using 12.5% MC as photocatalyst. In addition, the MC catalyst also showed great potential in transformation of other biomass derived benzyl-and furyl-alcohols. The catalytic mechanism suggested that ·O_(2)^(-) was the decisive active radical for HMF oxidation. Therefore, the MC heterojunction could be applied in photocatalytic conversion of biomass to valuable chemicals under ambient condition.
基金supported by the National Natural Science Foundation of China(Nos.51962032,61704114,and 51764049)the Youth Innovative Talents Cultivation Fund,Shihezi University(No.KX01480109)the Opening Project of The Research Center for Material Chemical Engineering Technology of Xinjiang Bingtuan(No.2017BTRC007).
文摘It is of vital importance to design efficient and low-cost bifunctional catalysts for the electrochemical water splitting under alkaline and neutral pH conditions.In this work,we report an efficient and stable NiCo_(2)S_(4)/N,S co-doped reduced graphene oxide(NCS/NS-rGO)electrocatalyst for water splitting,in which NCS microspheres are composed of one-dimentional(1D)nanorods grown homogeneously on the surface of NS-rGOs).The synergetic effect,abundant active sites,and hybridization of NCS/NS-rGO endow their outstanding electrocatalytic performance for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)in both alkaline and neutral conditions.Furthermore,NCS/NS-rGO employed as both anode and cathode in a two-electrode alkaline and neutral system electrolyzers deliver 10 mA/cm^(2) with the low cell voltage of 1.58 V in alkaline and 1.91 V in neutral condition.These results illustrate the rational design of carbon-supported nickel-cobalt based bifunctional materials for practical water splitting over a wide pH range.
基金supported by the National Key Research and Development Program of China(2021YFA1501500)the National Natural Science Foundation of China(22033008,22220102005,and 22171265)Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China(2021ZZ103).
文摘催化剂与助催化剂之间的低电荷分离效率严重限制了光催化性能.催化剂与助催化剂之间的强界面相互作用可以提高电荷分离效率.通过引入界面化学键增强组分间的界面相互作用是提高光催化性能的有效手段之一.本文合成了ZnIn_(2)S_(4)(ZIS)/Sv-MoS_(2)光催化剂,ZIS中的S原子与Sv-MoS_(2)中未配位Mo原子之间的键合作用形成了界面Mo–S键,这极大地提高了ZIS的光催化活性.采用不同的NaBH4蚀刻时间制备了MoS_(2-x)h.优化后的Z I S/MoS_(2)-4 h复合材料的产氢速率为7.6 mmol g^(−1)h^(−1),是原ZIS(1.6 mmol g^(−1)h^(−1))的4.75倍,是ZIS/MoS_(2)(3.7 mmol g^(−1)h^(−1))的2.05倍.非凡的光催化活性可归因于光生电子在Mo–S键的作用下更容易从ZIS转移到MoS_(2).光电测量表明,ZIS/MoS_(2)-4h具有有效的电荷转移.本工作揭示了引入界面化学键对ZIS/MoS_(2)光催化活性的影响,为通过界面工程设计优良的助催化剂提供了一种简单有效的方法.
基金supported by the National Key Scientific Instrument and Equipment Development Project of China(No.21627809)the National Natural Science Foundation of China(No.21777056)+2 种基金the Natural Science Foundation of Shandong Province(China)(Nos.ZR2020MB091 and ZR2020MB037)the Youth Innovative Talents Recruitment and Cultivation Program of Shandong Higher Education(China)the Jinan Scientifie Research Leader Workshop Project(China)(No.2018GXRC021).
文摘Achieving hydrogen production and simultaneous decomposition of organic pollutants through dual-functional photocatalytic reactions has received increasing attention due to the environmentally friendly and cost-effective characteristics of this approach.In this work,an urchin-like oxygen-doped MoS_(2)/ZnIn_(2)S_(4)(OMS/ZIS)composite was fabricated for the first time using a simple solvothermal method.The unique microstructure with abundant active sites and fast charge transfer channels further shortened the charge migration distance and compressed carrier recombination.The obtained composite exhibited an efficient H2 evolution reaction rate of 12.8 mmol/g/h under visible light,which was nearly times higher than pristine ZnIn_(2)S_(4),and the apparent quantum efficiency was 14.9%(420 nm).The results of the simultaneous photocatalytic H2 evolution and organic pollutant decomposition test were satisfactory,resulting in decomposition efficiencies of resorcinol,tetracycline,and bisphenol A that reached 41.5%,63.5%,and 53.0%after 4 h,respectively,and the highest H2 evolution rate was 672.7 umol/g/h for bisphenol A.Furthermore,natural organic matter(NOM)abundantly found in actual water was adopted as an electron donor for H production under simulated sunlight irradiation,indicating the promising practicability of simultaneous hydrogen evolution and NOM decomposition.Moreover,the mechanisms of the dual-purpose photocatalytic reactions,as well as the synergistic effect between the molecular structures of the organic pollutants and the corresponding adsorption behavior on the photocatalyst surface were illustrated in detail.These obtained results may serve as an inspiration for the rational design of highly efficient,dual-functional photocatalysts in the future.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51902282 and 12274361)the Qinglan Project of Jiangsu of China,the Natural Science Founda-tion of Jiangsu Province(No.BK20211361)the College Natural Science Research Project of Jiangsu Province(No.20KJA430004).
文摘As a highly toxic heavy metal,Cr(VI)reduction by developing high-efficiency photocatalysts is of great significance.Herein,we firstly design few-layer Ti_(3)C_(2) MXene(FTM)by the hand-operated shaking,show-ing dual advantages of structural stability and more exposed reactive sites.Then,a refluxed process is performed to fabricate FTM/CaIn_(2)S_(4)(FTC) composites,where 2D CaIn_(2)S_(4)(CIS) nanoplates are closely con-nected with 2D FTM to form Schottky junction.The optimal 1-FTC with the FTM/CIS mass ratio of 1 wt.%exhibits the highest activity toward photocatalytic Cr(VI)reduction under visible light.It is well eluci-dated that the broadened light absorption range and promoted charge carrier separation rate induced by the introduction of FTM are responsible for improving photocatalytic activity of CIS.During Cr(VI)photoreduction,1-FTC possesses excellent photo-stability and reusability.The effects of catalyst mass,co-existing ions,water sources and pH values on the Cr(VI)photoreduction efficiency are investigated.Pho-togenerated•O_(2)^(−)and e−are the main radical species accounting for Cr(VI)photoreduction over 1-FTC.The photocatalytic mechanism along with Cr(VI)removal pathway is exploited.This work may provide some insights into constructing FTM-based Schottky junctions for the efficient water purification.
文摘Crystalline@amorphous NiCo_(2)S_(4)@MoS_(2)(v-NCS@MS)nanostructures were designed and constructed via an ethylene glycol-induced strategy with hydrothermal synthesis and solvothermal method,which simultaneously realized the defect regulation of crystal NiCo_(2)S_(4) in the core.Taking advantage of the flexible protection of an amor-phous shell and the high capacity of a conductive core with defects,the v-NCS@MS electrode exhibited high specif-ic capacity(1034 mAh·g^(-1) at 1 A·g^(-1))and outstanding rate capability.Moreover,a hybrid supercapacitor was assembled with v-NCS@MS as cathode and activated carbon(AC)as anode,which can achieve remarkably high specific energy of 111 Wh·kg^(-1) at a specific power of 219 W·kg^(-1) and outstanding capacity retention of 80.5%after 15000 cycling at different current densities.