Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology r...Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology regulation, and heterojunction construction strategies to synthesize N-GQD/N-doped TiO_(2)/P-doped porous hollow g-C_(3)N_(4) nanotube (PCN) composite photocatalysts (denoted as G-TPCN). The optimal sample (G-TPCN doped with 0.1wt% N-GQD, denoted as 0.1% G-TPCN) exhibits significantly enhanced photoabsorption, which is attributed to the change in bandgap caused by elemental doping (P and N), the improved light-harvesting resulting from the tube structure, and the upconversion effect of N-GQDs. In addition, the internal charge separation and transfer capability of0.1% G-TPCN are dramatically boosted, and its carrier concentration is 3.7, 2.3, and 1.9 times that of N-TiO_(2), PCN, and N-TiO_(2)/PCN(TPCN-1), respectively. This phenomenon is attributed to the formation of Z-scheme heterojunction between N-TiO_(2) and PCNs, the excellent electron conduction ability of N-GQDs, and the short transfer distance caused by the porous nanotube structure. Compared with those of N-TiO_(2), PCNs, and TPCN-1, the H2 production activity of 0.1%G-TPCN under visible light is enhanced by 12.4, 2.3, and 1.4times, respectively, and its ciprofloxacin (CIP) degradation rate is increased by 7.9, 5.7, and 2.9 times, respectively. The optimized performance benefits from excellent photoresponsiveness and improved carrier separation and migration efficiencies. Finally, the photocatalytic mechanism of 0.1% G-TPCN and five possible degradation pathways of CIP are proposed. This study clarifies the mechanism of multiple modification strategies to synergistically improve the photocatalytic performance of 0.1% G-TPCN and provides a potential strategy for rationally designing novel photocatalysts for environmental remediation and solar energy conversion.展开更多
A hierarchical reduced graphene oxide-MnO_(2)@polypyrrole coaxial nanotube composite hydrogel was prepared via oxidative polymerization of pyrrole in the presence of MnO_(2)nanotubes,followed by the hydrothermal treat...A hierarchical reduced graphene oxide-MnO_(2)@polypyrrole coaxial nanotube composite hydrogel was prepared via oxidative polymerization of pyrrole in the presence of MnO_(2)nanotubes,followed by the hydrothermal treatment of graphene oxide and MnO_(2)@polypyrrole coaxial nanotubes.The stable composite hydrogel with a hierarchical network was composed of one-dimensional MnO_(2)@polypyrrole coaxial nanotube and two-dimensional graphene nanosheet and characterized by scanning electron microscope,Fourier transform infrared spectroscopy,X-ray diffraction,Brunauer-Emmett-Teller surface,and X-ray photoelectron spectroscopy measurements.The composite hydrogel can be used as an efficient adsorbent for Cr(Ⅵ)removal due to the synergistic interaction between graphene and MnO_(2)@polypyrrole and the hierarchical structure of the hydrogel.Moreover,the composite hydrogel is easily separated because of its stable monolith,and it is reusable(76.8%of removal ability remaining after five adsorption-desorption cycles).The simple fabrication and cost-effective separation process together with the excellent absorption performance endow the composite hydrogel with great potential for practical wastewater treatment.展开更多
For the application of carbon capture by membrane process,it is crucial to develop a highly permeable CO_(2)-selective membrane.In this work,we reported an ultra-thin polyether-block-amide(Pebax)mixedmatrix membranes(...For the application of carbon capture by membrane process,it is crucial to develop a highly permeable CO_(2)-selective membrane.In this work,we reported an ultra-thin polyether-block-amide(Pebax)mixedmatrix membranes(MMMs)incorporated by graphene oxide(GO),in which the interlayer channels were regulated to optimize the CO_(2)/N_(2) separation performance.Various membrane preparation conditions were systematically investigated on the influence of the membrane structure and separation performance,including the lateral size of GO nanosheets,GO loading,thermal reduction temperature,and time.The results demonstrated that the precisely regulated interlayer channel of GO nanosheets can rapidly provide CO_(2)-selective transport channels due to the synergetic effects of size sieving and preferential adsorption.The GO/Pebax ultra-thin MMMs exhibited CO_(2)/N_(2) selectivity of 72 and CO_(2) permeance of 400 GPU(1 GPU=106 cm^(3)(STP)·cm^(2)·s^(-1)·cmHg^(-1)),providing a promising candidate for CO_(2) capture.展开更多
Manganese ferrite(MnFe_(2)O_(4))has the advantages of simple preparation,high resistivity,and high crystal symmetry.Herein,we have developed an electrochemical sensor utilizing graphene and MnFe_(2)O_(4) nanocomposite...Manganese ferrite(MnFe_(2)O_(4))has the advantages of simple preparation,high resistivity,and high crystal symmetry.Herein,we have developed an electrochemical sensor utilizing graphene and MnFe_(2)O_(4) nanocomposites modified glassy carbon electrode(GCE),which is very efficient and sensitive to detect bisphenol A(BPA).MnFe_(2)O_(4)/graphene(GR)was synthesized by immobilizing the MnFe_(2)O_(4) microspheres on the graphene nanosheets via a simple one-pot solvothermal method.The morphology and structure of the MnFe_(2)O_(4)/GR nanocomposite have been characterized through scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FT-IR),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).In addition,electrochemical properties of the modified materials are comparably explored by means of cyclic voltammetry(CV),electrochemical impedance spectroscopy(EIS)and differential pulse voltammetry(DPV).Under the optimal conditions,the proposed electrochemical sensor for the detection of BPA has a linear range of 0.8-400μmol/L and a detection limit of 0.0235μmol/L(S/N=3)with high sensitivity,good selectivity and high stability.In addition,the proposed sensor was used to measure the content of BPA in real water samples with a recovery rate of 97.94%-104.56%.At present,the synthesis of MnFe_(2)O_(4)/GR provides more opportunities for the electrochemical detection of BPA in practical applications.展开更多
Reduced graphene oxide(rGO)aerogels are emerging as very attractive scaffolds for high-performance electromagnetic wave absorption materials(EWAMs)due to their intrinsic conductive networks and intricate interior micr...Reduced graphene oxide(rGO)aerogels are emerging as very attractive scaffolds for high-performance electromagnetic wave absorption materials(EWAMs)due to their intrinsic conductive networks and intricate interior microstructure,as well as good compatibility with other electromagnetic(EM)components.Herein,we realized the decoration of rGO aerogel with Mo_(2)C nanoparticles by sequential hydrothermal assembly,freeze-drying,and high-temperature pyrolysis.Results show that Mo_(2)C nanoparticle loading can be easily controlled by the ammonium molybdate to glucose molar ratio.The hydrophobicity and thermal insulation of the rGO aerogel are effectively improved upon the introduction of Mo_(2)C nanoparticles,and more importantly,these nanoparticles regulate the EM properties of the rGO aerogel to a large extent.Although more Mo_(2)C nanoparticles may decrease the overall attenuation ability of the rGO aerogel,they bring much better impedance matching.At a molar ratio of 1:1,a desirable balance between attenuation ability and impedance matching is observed.In this context,the Mo_(2)C/r GO aerogel displays strong reflection loss and broad response bandwidth,even with a small applied thickness(1.7 mm)and low filler loading(9.0wt%).The positive effects of Mo_(2)C nanoparticles on multifunctional properties may render Mo_(2)C/r GO aerogels promising candidates for high-performance EWAMs under harsh conditions.展开更多
Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective int...Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges.Herein,reduced graphene oxide/carbon foams(RGO/CFs)with two-dimensional/three-dimensional(2D/3D)van der Waals(vdWs)heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying,immersing absorption,secondary freeze-drying,followed by carbonization treatment.Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching,the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances,achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of-50.58 dB with the low matching thicknesses.Furthermore,the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties,good corrosion resistance performances as well as outstanding thermal insulation capabilities,displaying the great potential in complex and variable environments.Accordingly,this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures,but also outlined a powerful mixeddimensional assembly strategy for engineering multifunctional foams for electromagnetic protection,aerospace and other complex conditions.展开更多
The main bottleneck against industrial utilization of sodium ion batteries(SIBs)is the lack of high-capacity electrodes to rival those of the benchmark lithium ion batteries(LIBs).Here in this work,we have developed a...The main bottleneck against industrial utilization of sodium ion batteries(SIBs)is the lack of high-capacity electrodes to rival those of the benchmark lithium ion batteries(LIBs).Here in this work,we have developed an economical method for in situ fabrication of nanocomposites made of crystalline few-layer graphene sheets loaded with ultrafine SnO_(2)nanocrystals,using short exposure of microwave to xerogel of graphene oxide(GO)and tin tetrachloride containing minute catalyzing dispersoids of chemically reduced GO(RGO).The resultant nanocomposites(SnO_(2)@MWG)enabled significantly quickened redox processes as SIB anode,which led to remarkable full anode-specific capacity reaching 538 mAh g^(−1)at 0.05 A g^(−1)(about 1.45 times of the theoretical capacity of graphite for the LIB),in addition to outstanding rate performance over prolonged charge–discharge cycling.Anodes based on the optimized SnO_(2)@MWG delivered stable performance over 2000 cycles even at a high current density of 5 A g^(−1),and capacity retention of over 70.4%was maintained at a high areal loading of 3.4 mg cm^(−2),highly desirable for high energy density SIBs to rival the current benchmark LIBs.展开更多
The electrochemical reduction of CO_(2)(CO_(2)ER)into the renewable and sustainable green fuels,such as low-carbon alcohols,is one of several workable strategies.CO_(2)ER can be combined with renewable electricity to ...The electrochemical reduction of CO_(2)(CO_(2)ER)into the renewable and sustainable green fuels,such as low-carbon alcohols,is one of several workable strategies.CO_(2)ER can be combined with renewable electricity to transform intermittent energy sources(such as wind,hydro,and solar)into a fuel that can be stored until it is ready to be used.The intrinsic characteristics of the employed catalyst have a significant and substantial effect on the efficiency of CO_(2)ER and the ensuing economic viability.The paradigmatic multicarbon alcohol catalysts should increase the concentration of*CO in the reaction environment,stabilize the key intermediate products during the reaction,and facilitate the C-C coupling interaction.Since graphene has a large surface area and exceptional conductivity,it has been used as a support for active phases(nanoparticles or nanosheets).It is possible for graphene to enhance charge transport and accelerate CO_(2)conversion through its electronic and structural coupling effects.At the interface,a synergy can be produced that improves CO_(2)ER by increasing*CO adsorption,intermediate binding,and stability.This article focuses on recent advancements in graphene-based catalysts that promote CO_(2)ER to alcohols.Likewise,this paper also describes and discusses the key role graphene plays in catalyzing CO_(2)ER into alcohols.Finally,we hope to provide future ideas for the design of graphene-based electrocatalysts.展开更多
1. The transient absorption spectra of the WS2 monolayer sample.In the measurement of the transient absorption spectra of the WS2 monolayer sample, A 400-nm (3.1eV) pump pulse with a peak fluence of about 10μJ/cm2exc...1. The transient absorption spectra of the WS2 monolayer sample.In the measurement of the transient absorption spectra of the WS2 monolayer sample, A 400-nm (3.1eV) pump pulse with a peak fluence of about 10μJ/cm2excites the electrons from the valence band into the conduction band,the展开更多
Using dual graphene–WS2 quadrilayer heterostructures as an example, we find that the ultrafast transfer of electrons from WS2 to graphene takes place within 114 fs, and the Coulomb field of the charge can effectively...Using dual graphene–WS2 quadrilayer heterostructures as an example, we find that the ultrafast transfer of electrons from WS2 to graphene takes place within 114 fs, and the Coulomb field of the charge can effectively affect the interlayer electron transfer. This effect illustrates that the charge transfer in such van der Waals heterostructures may be controlled by an externally applied electric field for promising applications in photoelectric devices.展开更多
钠离子电池(sodium-ion batteries,SIBs)具有成本低的潜在优势,有望成为替代锂离子电池(lithium ion batteries,LIBs)的储能设备。为提升钠离子电池的性能,开发出适应钠离子脱嵌的负极材料尤为重要。硫化锑(Sb_(2)S_(3))因其理论比容量...钠离子电池(sodium-ion batteries,SIBs)具有成本低的潜在优势,有望成为替代锂离子电池(lithium ion batteries,LIBs)的储能设备。为提升钠离子电池的性能,开发出适应钠离子脱嵌的负极材料尤为重要。硫化锑(Sb_(2)S_(3))因其理论比容量高被认为是较好的钠离子电池负极材料。本文使用简单水热法将Sb_(2)S_(3)与石墨烯复合,制备Sb_(2)S_(3)/石墨烯复合材料(Sb_(2)S_(3)/Gr)。结果表明:Sb_(2)S_(3)/Gr作为钠离子电池负极时,不仅表现出良好的电导率(3.5×10~(-3)S/cm)和钠离子扩散速率(4.853×10~(-13)cm~2/s),而且在0.5 A/g的电流密度下,首圈库伦效率为76.27%,经150次循环后的比容量稳定在488 m A·h/g,表现出较高的比容量。Sb_(2)S_(3)/Gr复合材料表现出了极大的应用潜力,为高性能钠离子电池负极材料的研发提供了一定的参考价值。展开更多
The hydrogen evolution reaction performance of semiconducting 2H-phase molybdenum disulfide(2H-MoS_(2))presents a significant hurdle in realizing its full potential applications.Here,we utilize theoretical calculation...The hydrogen evolution reaction performance of semiconducting 2H-phase molybdenum disulfide(2H-MoS_(2))presents a significant hurdle in realizing its full potential applications.Here,we utilize theoretical calculations to predict possible functionalized graphene quantum dots(GQDs),which can enhance HER activity of bulk MoS_(2).Subsequently,we design a functionalized GQD-induced in-situ bottom-up strategy to fabricate near atom-layer 2H-MoS_(2) nanosheets mediated with GQDs(ALQD)by modulating the concentration of electron withdrawing/donating functional groups.Experimental results reveal that the introduction of a series of functionalized GQDs during the synthesis of ALQD plays a crucial role.Notably,the higher the concentration and strength of electron-withdrawing functional groups on GQDs,the thinner and more active the resulting ALQD are.Remarkably,the synthesized near atom-layer ALQD-SO_(3)demonstrate significantly improved HER performance.Our GQD-induced strategy provides a simple and efficient approach for expanding the catalytic application of MoS_(2).Furthermore,it holds substantial potential for developing nanosheets in other transition-metal dichalcogenide materials.展开更多
Compared with the traditional heteroatom doping,employing heterostructure is a new modulating approach for carbon-based electrocatalysts.Herein,a facile ball milling-assisted route is proposed to synthesize porous car...Compared with the traditional heteroatom doping,employing heterostructure is a new modulating approach for carbon-based electrocatalysts.Herein,a facile ball milling-assisted route is proposed to synthesize porous carbon materials composed of abundant graphene/hexagonal boron nitride(G/h-BN)heterostructures.Metal Ni powder and nanoscale h-BN sheets are used as a catalytic substrate/hard template and“nucleation seed”for the formation of the heterostructure,respectively.As-prepared G/h-BN heterostructures exhibit enhanced electrocatalytic activity toward H_(2)O_(2) generation with 86%-95%selectivity at the range of 0.45-0.75 V versus reversible hydrogen electrode(RHE)and a positive onset potential of 0.79 versus RHE(defined at a ring current density of 0.3 mA cm^(-2))in the alkaline solution.In a flow cell,G/h-BN heterostructured electrocatalyst has a H_(2)O_(2) production rate of up to 762 mmol g_(catalyst)^(-1) h^(-1) and Faradaic efficiency of over 75%during 12 h testing,superior to the reported carbon-based electrocatalysts.The density functional theory simulation suggests that the B atoms at the interface of the G/h-BN heterostructure are the key active sites.This research provides a new route to activate carbon catalysts toward highly active and selective O_(2)-to-H_(2)O_(2) conversion.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos.U2002212,52102058,52204414,52204413,and 52204412)the National Key R&D Program of China (Nos.2021YFC1910504,2019YFC1907101,2019YFC1907103,and 2017YFB0702304)+7 种基金the Key R&D Program of Ningxia Hui Autonomous Region,China (Nos.2021BEG01003 and2020BCE01001)the Xijiang Innovation and Entrepreneurship Team,China (No.2017A0109004)the Macao Young Scholars Program (No.AM2022024),Chinathe Beijing Natural Science Foundation (Nos.L212020 and 2214073),Chinathe Guangdong Basic and Applied Basic Research Foundation,China (Nos.2021A1515110998 and 2020A1515110408)the China Postdoctoral Science Foundation (No.2022M710349)the Fundamental Research Funds for the Central Universities,China (Nos.FRF-BD-20-24A,FRF-TP-20-031A1,FRF-IC-19-017Z,and 06500141)the Integration of Green Key Process Systems MIIT and Scientific and Technological Innovation Foundation of Foshan,China(Nos.BK22BE001 and BK21BE002)。
文摘Exclusive responsiveness to ultraviolet light (~3.2 eV) and high photogenerated charge recombination rate are the two primary drawbacks of pure TiO_(2). We combined N-doped graphene quantum dots (N-GQDs), morphology regulation, and heterojunction construction strategies to synthesize N-GQD/N-doped TiO_(2)/P-doped porous hollow g-C_(3)N_(4) nanotube (PCN) composite photocatalysts (denoted as G-TPCN). The optimal sample (G-TPCN doped with 0.1wt% N-GQD, denoted as 0.1% G-TPCN) exhibits significantly enhanced photoabsorption, which is attributed to the change in bandgap caused by elemental doping (P and N), the improved light-harvesting resulting from the tube structure, and the upconversion effect of N-GQDs. In addition, the internal charge separation and transfer capability of0.1% G-TPCN are dramatically boosted, and its carrier concentration is 3.7, 2.3, and 1.9 times that of N-TiO_(2), PCN, and N-TiO_(2)/PCN(TPCN-1), respectively. This phenomenon is attributed to the formation of Z-scheme heterojunction between N-TiO_(2) and PCNs, the excellent electron conduction ability of N-GQDs, and the short transfer distance caused by the porous nanotube structure. Compared with those of N-TiO_(2), PCNs, and TPCN-1, the H2 production activity of 0.1%G-TPCN under visible light is enhanced by 12.4, 2.3, and 1.4times, respectively, and its ciprofloxacin (CIP) degradation rate is increased by 7.9, 5.7, and 2.9 times, respectively. The optimized performance benefits from excellent photoresponsiveness and improved carrier separation and migration efficiencies. Finally, the photocatalytic mechanism of 0.1% G-TPCN and five possible degradation pathways of CIP are proposed. This study clarifies the mechanism of multiple modification strategies to synergistically improve the photocatalytic performance of 0.1% G-TPCN and provides a potential strategy for rationally designing novel photocatalysts for environmental remediation and solar energy conversion.
基金Funded by the Open/Innovation Fund of Hubei Three Gorges Laboratory(No.SK212002)。
文摘A hierarchical reduced graphene oxide-MnO_(2)@polypyrrole coaxial nanotube composite hydrogel was prepared via oxidative polymerization of pyrrole in the presence of MnO_(2)nanotubes,followed by the hydrothermal treatment of graphene oxide and MnO_(2)@polypyrrole coaxial nanotubes.The stable composite hydrogel with a hierarchical network was composed of one-dimensional MnO_(2)@polypyrrole coaxial nanotube and two-dimensional graphene nanosheet and characterized by scanning electron microscope,Fourier transform infrared spectroscopy,X-ray diffraction,Brunauer-Emmett-Teller surface,and X-ray photoelectron spectroscopy measurements.The composite hydrogel can be used as an efficient adsorbent for Cr(Ⅵ)removal due to the synergistic interaction between graphene and MnO_(2)@polypyrrole and the hierarchical structure of the hydrogel.Moreover,the composite hydrogel is easily separated because of its stable monolith,and it is reusable(76.8%of removal ability remaining after five adsorption-desorption cycles).The simple fabrication and cost-effective separation process together with the excellent absorption performance endow the composite hydrogel with great potential for practical wastewater treatment.
基金financially supported by The Natural Science Foundation of the Jiangsu Higher Education Institutions of China(22KJB530007,22KJA530001)National Natural Science Foundation of China(22208151)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20220002)the State Key Laboratory of MaterialsOriented Chemical Engineering(SKL-MCE-22B07).
文摘For the application of carbon capture by membrane process,it is crucial to develop a highly permeable CO_(2)-selective membrane.In this work,we reported an ultra-thin polyether-block-amide(Pebax)mixedmatrix membranes(MMMs)incorporated by graphene oxide(GO),in which the interlayer channels were regulated to optimize the CO_(2)/N_(2) separation performance.Various membrane preparation conditions were systematically investigated on the influence of the membrane structure and separation performance,including the lateral size of GO nanosheets,GO loading,thermal reduction temperature,and time.The results demonstrated that the precisely regulated interlayer channel of GO nanosheets can rapidly provide CO_(2)-selective transport channels due to the synergetic effects of size sieving and preferential adsorption.The GO/Pebax ultra-thin MMMs exhibited CO_(2)/N_(2) selectivity of 72 and CO_(2) permeance of 400 GPU(1 GPU=106 cm^(3)(STP)·cm^(2)·s^(-1)·cmHg^(-1)),providing a promising candidate for CO_(2) capture.
基金Project(2108085ME184)supported by the Natural Science Foundation of Anhui Province,ChinaProject(2022AH010019)supported by the Innovation Team Project of Anhui Provincial Department of Education,China+1 种基金Project(GXXT-2021-057)supported by the Collaborative Innovation Project of Anhui Provincial Department of Education,ChinaProject(2020QDZ36)supported by the Doctoral Scientific Research Startup Foundation of Anhui Jianzhu University,China。
文摘Manganese ferrite(MnFe_(2)O_(4))has the advantages of simple preparation,high resistivity,and high crystal symmetry.Herein,we have developed an electrochemical sensor utilizing graphene and MnFe_(2)O_(4) nanocomposites modified glassy carbon electrode(GCE),which is very efficient and sensitive to detect bisphenol A(BPA).MnFe_(2)O_(4)/graphene(GR)was synthesized by immobilizing the MnFe_(2)O_(4) microspheres on the graphene nanosheets via a simple one-pot solvothermal method.The morphology and structure of the MnFe_(2)O_(4)/GR nanocomposite have been characterized through scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FT-IR),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).In addition,electrochemical properties of the modified materials are comparably explored by means of cyclic voltammetry(CV),electrochemical impedance spectroscopy(EIS)and differential pulse voltammetry(DPV).Under the optimal conditions,the proposed electrochemical sensor for the detection of BPA has a linear range of 0.8-400μmol/L and a detection limit of 0.0235μmol/L(S/N=3)with high sensitivity,good selectivity and high stability.In addition,the proposed sensor was used to measure the content of BPA in real water samples with a recovery rate of 97.94%-104.56%.At present,the synthesis of MnFe_(2)O_(4)/GR provides more opportunities for the electrochemical detection of BPA in practical applications.
基金supported by the China Postdoctoral Science Foundation(No.2021MD703944)the Fund of Science and Technology on Near-Surface Detection Laboratory(No.6142414211808)+1 种基金the Director Fund of State Key Laboratory of Pulsed Power Laser Technology(No.SKL2021ZR06)the National Natural Science Foundation of China(No.21776053)。
文摘Reduced graphene oxide(rGO)aerogels are emerging as very attractive scaffolds for high-performance electromagnetic wave absorption materials(EWAMs)due to their intrinsic conductive networks and intricate interior microstructure,as well as good compatibility with other electromagnetic(EM)components.Herein,we realized the decoration of rGO aerogel with Mo_(2)C nanoparticles by sequential hydrothermal assembly,freeze-drying,and high-temperature pyrolysis.Results show that Mo_(2)C nanoparticle loading can be easily controlled by the ammonium molybdate to glucose molar ratio.The hydrophobicity and thermal insulation of the rGO aerogel are effectively improved upon the introduction of Mo_(2)C nanoparticles,and more importantly,these nanoparticles regulate the EM properties of the rGO aerogel to a large extent.Although more Mo_(2)C nanoparticles may decrease the overall attenuation ability of the rGO aerogel,they bring much better impedance matching.At a molar ratio of 1:1,a desirable balance between attenuation ability and impedance matching is observed.In this context,the Mo_(2)C/r GO aerogel displays strong reflection loss and broad response bandwidth,even with a small applied thickness(1.7 mm)and low filler loading(9.0wt%).The positive effects of Mo_(2)C nanoparticles on multifunctional properties may render Mo_(2)C/r GO aerogels promising candidates for high-performance EWAMs under harsh conditions.
基金provided by Guizhou Provincial Science and Technology Projects for Platform and Talent Team Plan(GCC[2023]007)Fok Ying Tung Education Foundation(171095)National Natural Science Foundation of China(11964006).
文摘Considering the serious electromagnetic wave(EMW)pollution problems and complex application condition,there is a pressing need to amalgamate multiple functionalities within a single substance.However,the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges.Herein,reduced graphene oxide/carbon foams(RGO/CFs)with two-dimensional/three-dimensional(2D/3D)van der Waals(vdWs)heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying,immersing absorption,secondary freeze-drying,followed by carbonization treatment.Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching,the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances,achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of-50.58 dB with the low matching thicknesses.Furthermore,the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties,good corrosion resistance performances as well as outstanding thermal insulation capabilities,displaying the great potential in complex and variable environments.Accordingly,this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures,but also outlined a powerful mixeddimensional assembly strategy for engineering multifunctional foams for electromagnetic protection,aerospace and other complex conditions.
基金funded by the Zhengzhou Materials Genome Institute,the National Talents Program of China,and Key Innovation Projects of the Zhengzhou Municipal City of China.
文摘The main bottleneck against industrial utilization of sodium ion batteries(SIBs)is the lack of high-capacity electrodes to rival those of the benchmark lithium ion batteries(LIBs).Here in this work,we have developed an economical method for in situ fabrication of nanocomposites made of crystalline few-layer graphene sheets loaded with ultrafine SnO_(2)nanocrystals,using short exposure of microwave to xerogel of graphene oxide(GO)and tin tetrachloride containing minute catalyzing dispersoids of chemically reduced GO(RGO).The resultant nanocomposites(SnO_(2)@MWG)enabled significantly quickened redox processes as SIB anode,which led to remarkable full anode-specific capacity reaching 538 mAh g^(−1)at 0.05 A g^(−1)(about 1.45 times of the theoretical capacity of graphite for the LIB),in addition to outstanding rate performance over prolonged charge–discharge cycling.Anodes based on the optimized SnO_(2)@MWG delivered stable performance over 2000 cycles even at a high current density of 5 A g^(−1),and capacity retention of over 70.4%was maintained at a high areal loading of 3.4 mg cm^(−2),highly desirable for high energy density SIBs to rival the current benchmark LIBs.
文摘The electrochemical reduction of CO_(2)(CO_(2)ER)into the renewable and sustainable green fuels,such as low-carbon alcohols,is one of several workable strategies.CO_(2)ER can be combined with renewable electricity to transform intermittent energy sources(such as wind,hydro,and solar)into a fuel that can be stored until it is ready to be used.The intrinsic characteristics of the employed catalyst have a significant and substantial effect on the efficiency of CO_(2)ER and the ensuing economic viability.The paradigmatic multicarbon alcohol catalysts should increase the concentration of*CO in the reaction environment,stabilize the key intermediate products during the reaction,and facilitate the C-C coupling interaction.Since graphene has a large surface area and exceptional conductivity,it has been used as a support for active phases(nanoparticles or nanosheets).It is possible for graphene to enhance charge transport and accelerate CO_(2)conversion through its electronic and structural coupling effects.At the interface,a synergy can be produced that improves CO_(2)ER by increasing*CO adsorption,intermediate binding,and stability.This article focuses on recent advancements in graphene-based catalysts that promote CO_(2)ER to alcohols.Likewise,this paper also describes and discusses the key role graphene plays in catalyzing CO_(2)ER into alcohols.Finally,we hope to provide future ideas for the design of graphene-based electrocatalysts.
文摘1. The transient absorption spectra of the WS2 monolayer sample.In the measurement of the transient absorption spectra of the WS2 monolayer sample, A 400-nm (3.1eV) pump pulse with a peak fluence of about 10μJ/cm2excites the electrons from the valence band into the conduction band,the
基金Supported by the National Key Research and Development Program under Grant No 2016YFA0401100the National Natural Science Foundation of China under Grant No 61575129+1 种基金the National High Technology Research and Development Program of China under Grant No 2015AA021102the Major Science and Technology Project of Guangdong Province under Grant No2140B010131006
文摘Using dual graphene–WS2 quadrilayer heterostructures as an example, we find that the ultrafast transfer of electrons from WS2 to graphene takes place within 114 fs, and the Coulomb field of the charge can effectively affect the interlayer electron transfer. This effect illustrates that the charge transfer in such van der Waals heterostructures may be controlled by an externally applied electric field for promising applications in photoelectric devices.
文摘钠离子电池(sodium-ion batteries,SIBs)具有成本低的潜在优势,有望成为替代锂离子电池(lithium ion batteries,LIBs)的储能设备。为提升钠离子电池的性能,开发出适应钠离子脱嵌的负极材料尤为重要。硫化锑(Sb_(2)S_(3))因其理论比容量高被认为是较好的钠离子电池负极材料。本文使用简单水热法将Sb_(2)S_(3)与石墨烯复合,制备Sb_(2)S_(3)/石墨烯复合材料(Sb_(2)S_(3)/Gr)。结果表明:Sb_(2)S_(3)/Gr作为钠离子电池负极时,不仅表现出良好的电导率(3.5×10~(-3)S/cm)和钠离子扩散速率(4.853×10~(-13)cm~2/s),而且在0.5 A/g的电流密度下,首圈库伦效率为76.27%,经150次循环后的比容量稳定在488 m A·h/g,表现出较高的比容量。Sb_(2)S_(3)/Gr复合材料表现出了极大的应用潜力,为高性能钠离子电池负极材料的研发提供了一定的参考价值。
基金This research was supported by Shanghai Pujiang Program(21PJD022)National Natural Science Foundation of China(21901154).
文摘The hydrogen evolution reaction performance of semiconducting 2H-phase molybdenum disulfide(2H-MoS_(2))presents a significant hurdle in realizing its full potential applications.Here,we utilize theoretical calculations to predict possible functionalized graphene quantum dots(GQDs),which can enhance HER activity of bulk MoS_(2).Subsequently,we design a functionalized GQD-induced in-situ bottom-up strategy to fabricate near atom-layer 2H-MoS_(2) nanosheets mediated with GQDs(ALQD)by modulating the concentration of electron withdrawing/donating functional groups.Experimental results reveal that the introduction of a series of functionalized GQDs during the synthesis of ALQD plays a crucial role.Notably,the higher the concentration and strength of electron-withdrawing functional groups on GQDs,the thinner and more active the resulting ALQD are.Remarkably,the synthesized near atom-layer ALQD-SO_(3)demonstrate significantly improved HER performance.Our GQD-induced strategy provides a simple and efficient approach for expanding the catalytic application of MoS_(2).Furthermore,it holds substantial potential for developing nanosheets in other transition-metal dichalcogenide materials.
基金supported by the“National Natural Science Foundation of China (Nos.51902162,21901154)”the FoundationResearch Project of Jiangsu Province (BK20221338)+1 种基金Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources,International Innovation Center for Forest Chemicals and Materials,Nanjing Forestry University,merit-based funding for Nanjing innovation and technology projects,Shanghai Pujiang Program (21PJD022)the Foundation of Jiangsu Key Lab of Biomass Energy and Material (JSBEM-S-202101).
文摘Compared with the traditional heteroatom doping,employing heterostructure is a new modulating approach for carbon-based electrocatalysts.Herein,a facile ball milling-assisted route is proposed to synthesize porous carbon materials composed of abundant graphene/hexagonal boron nitride(G/h-BN)heterostructures.Metal Ni powder and nanoscale h-BN sheets are used as a catalytic substrate/hard template and“nucleation seed”for the formation of the heterostructure,respectively.As-prepared G/h-BN heterostructures exhibit enhanced electrocatalytic activity toward H_(2)O_(2) generation with 86%-95%selectivity at the range of 0.45-0.75 V versus reversible hydrogen electrode(RHE)and a positive onset potential of 0.79 versus RHE(defined at a ring current density of 0.3 mA cm^(-2))in the alkaline solution.In a flow cell,G/h-BN heterostructured electrocatalyst has a H_(2)O_(2) production rate of up to 762 mmol g_(catalyst)^(-1) h^(-1) and Faradaic efficiency of over 75%during 12 h testing,superior to the reported carbon-based electrocatalysts.The density functional theory simulation suggests that the B atoms at the interface of the G/h-BN heterostructure are the key active sites.This research provides a new route to activate carbon catalysts toward highly active and selective O_(2)-to-H_(2)O_(2) conversion.