期刊文献+
共找到273篇文章
< 1 2 14 >
每页显示 20 50 100
Reinforcing Effect of Graphene in Epoxy Adhesives: Review
1
作者 Fatehbahadur Purushottam Lodh Ravindra Vilas Indubai Gadhave 《Open Journal of Composite Materials》 2024年第1期60-70,共11页
Due to its great strength, hardness, and chemical resistance, epoxy adhesives are becoming more and more used. They continue to have drawbacks, nevertheless, such as poor thermal stability, and poor electrical conduct... Due to its great strength, hardness, and chemical resistance, epoxy adhesives are becoming more and more used. They continue to have drawbacks, nevertheless, such as poor thermal stability, and poor electrical conductivity. Two-dimensional graphene is a wonderful substance with exceptional qualities including high strength, high electrical conductivity, and large surface area. Because of these characteristics, graphene has been thoroughly researched for its prospective uses in a variety of industries, including electronics, energy storage, and biomedical engineering. The use of graphene as an additive in epoxy adhesives to enhance the characteristics of such materials is one of its promising uses. This paper reviewed the latest findings about graphene’s effects on epoxy adhesives. The various methods to produce graphene-epoxy composites and their improvements are discussed. This research additionally discusses the challenges associated with the production and processing of graphene-epoxy composites, as well as the mechanisms behind the improvements in mechanical, electrical, and thermal characteristics. The final section of this review discusses the challenges and prospective uses of graphene in epoxy adhesives in the future. 展开更多
关键词 graphene epoxy Adhesives composite Mechanical Properties
下载PDF
Large-scale fabrication of re duce d graphene oxide-sulfur composite films for flexible lithium-sulfur batteries 被引量:4
2
作者 Yue Liu Minjie Yao +1 位作者 Linlin Zhang Zhiqiang Niu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第11期199-206,共8页
The rapid development of flexible electronic devices requires the design of flexible energy-storage devices. Lithium-sulfur(Li-S) batteries are attracting much interest due to their high energy density. Therefore, fle... The rapid development of flexible electronic devices requires the design of flexible energy-storage devices. Lithium-sulfur(Li-S) batteries are attracting much interest due to their high energy density. Therefore, flexible Li-S batteries with high areal capacity are desired. Herein, we fabricated freestanding reduced graphene oxide-sulfur(RGO@S) composite films with a cross-linked structure using a blade coating technique, followed by a subsequent chemical reduction. The porous cross-linked structure endows the composite films with excellent electrochemical performance. The batteries based on RGO@S composite films could exhibit a high discharge capacity of 1381 m Ah/g at 0.1 C and excellent cycle stability. Furthermore, the freestanding composite film possesses excellent conductivity and high mechanical strength. Therefore, they can be used as the cathodes of flexible Li-S batteries. As a proof of concept, soft-packaged Li-S batteries were assembled and remained stable electrochemical performance under different bending states. 展开更多
关键词 graphene SCALEUP composite film FLEXIBLE Lithium-sulfur battery
下载PDF
Enhancing the Mechanical Strength for a Microwave Absorption Composite Based on Graphene Nanoplatelet/Epoxy with Carbon Fibers 被引量:1
3
作者 Maryam Jahan Richard Osuemeshi Inakpenu +1 位作者 Kuo Li Guanglin Zhao 《Open Journal of Composite Materials》 2019年第2期230-248,共19页
Microwave absorption (MWA) materials such as graphene nanoplatelet (GNP)/epoxy are mostly used as coatings on existing structures without considering mechanical properties. In this work, we aim to enhance the mechanic... Microwave absorption (MWA) materials such as graphene nanoplatelet (GNP)/epoxy are mostly used as coatings on existing structures without considering mechanical properties. In this work, we aim to enhance the mechanical strength of the composite for multifunctional potentials. We used carbon fiber (four layers) to reinforce GNP/epoxy composite (2 mm thick) and investigated their multifunctional properties with GNP loading from 3 to 7 wt%. We measured the tensile strength, hardness, and MW absorption (26.5 - 40 GHz) of composite samples. Our results showed an increase in tensile strength to 109.1 ± 7.9 MPa with 7 wt% GNP in the composite from 15.3 MPa for pure epoxy. The hardness of the composites was also substantially enhanced with GNP loading up to 7 wt%. A MW absorption ratio of 72% was attained for the sample with 7 wt% GNP loading near 40 GHz. The homogenous dispersion of GNPs in the matrix reduces the stress concentration and minimizes the influence of the defects. The high MW absorption and large transmission loss together with enhanced mechanical strength provides a novel multifunctional material for potential applications. 展开更多
关键词 Microwave Absorption Mechanical Strength graphene Nanoplatelet/epoxy/Carbon Fiber composite MULTIFUNCTIONAL composite
下载PDF
The Reinforcing Effect of Graphene on the Mechanical Properties of Carbon-Epoxy Composites 被引量:1
4
作者 Hadimani Shivakumar N. M. Renukappa +1 位作者 K. N. Shivakumar B. Suresha 《Open Journal of Composite Materials》 2020年第2期27-44,共18页
Graphene nanoplatelets (GNPs) are novel nanofillers holding attractive characteristics, including vigorous compatibility with majority polymers, outstanding mechanical, thermal, and electrical properties. In this stud... Graphene nanoplatelets (GNPs) are novel nanofillers holding attractive characteristics, including vigorous compatibility with majority polymers, outstanding mechanical, thermal, and electrical properties. In this study, the outstanding GNPs filler was reinforced to the epoxy matrix and carbon fabric/epoxy hybrid composite slabs to enrich their mechanical properties. Graphene nanoplatelets of 0.5, 1, 1.5 and 2 weight percentages were integrated into the epoxy and the physico-mechanical (microstructure, density, tensile, flexural and impact strength) properties were investigated. Furthermore, the mechanical properties of unfilled and 1 wt% GNPs filled carbon fabric/epoxy hybrid composite slabs were investigated. Subsequently, noteworthy improvement in the mechanical properties was conquered for the carbon fabric/epoxy hybrid composites. 展开更多
关键词 graphene NANOPLATELETS Carbon Fabric/epoxy Hybrid composite Physico-Mechanical Properties Impact STRENGTH
下载PDF
Preparation and Characterization of Co_(3)O_(4)/Graphene/Cellulose Nanofiber Composite Films 被引量:2
5
作者 Zejun Ding Tianying Chen +3 位作者 Yiming Zhou Peng Zhu Feiyun Li Yanjun Tang 《Paper And Biomaterials》 CAS 2022年第2期27-36,共10页
Nanocellulose has served as an eye-catching nanomaterial for constructing advanced functional devices with renewability,light weight,flexibility,and environmental friendliness.In this study,Co_(3)O_(4)/graphene/cellul... Nanocellulose has served as an eye-catching nanomaterial for constructing advanced functional devices with renewability,light weight,flexibility,and environmental friendliness.In this study,Co_(3)O_(4)/graphene/cellulose nanofiber(CNF)flexible composite films,in which the CNF acted as a spacer for the graphene,were prepared via a facile and scalable vacuum filtration method.The effects of the CNF on the microstructure,hydrophilicity,thermal stability,tensile strength,surface resistance,and electrochemical performance of the Co_(3)O_(4)/graphene/CNF composite films were systematically investigated.The results showed that the synergistic interaction of the CNF and graphene substantially improved the overall properties of the Co_(3)O_(4)/graphene/CNF composite films,particularly their hydrophilicity and tensile strength.Meanwhile,Co_(3)O_(4)/graphene/CNF composite films with a CNF content of 4%appeared to have the optimal electrochemical performance,with an area specific capacitance of 56 mF/cm^(2) and prominent capacitance retention of 95.6%at a current density of 1 A/g after 1000 cycles.This work demonstrated that the prepared Co_(3)O_(4)/graphene/CNF flexible composite films have great application potential in the field of flexible energy storage devices. 展开更多
关键词 cellulose nanofiber graphene Co_(3)O_(4) supercapacitor composite films
下载PDF
Recent progress on thermal conductivity of graphene filled epoxy composites
6
作者 Ruicong Lv Yanjuan Ren +1 位作者 Haichang Guo Shulin Bai 《Nano Materials Science》 EI CAS CSCD 2022年第3期205-219,共15页
With the rapid development of the electronic industry, the requirements for packaging materials with high thermal conductivity(TC) are getting higher and higher. Epoxy is widely used as package material for electronic... With the rapid development of the electronic industry, the requirements for packaging materials with high thermal conductivity(TC) are getting higher and higher. Epoxy is widely used as package material for electronic package applications. But it’s intrinsic TC can’t meets the increasing demands. Adding high TC graphene into epoxy matrix is a proper way to reinforce epoxy composites. This review focuses on the filler modification,preparation process and thermal properties of graphene-filled epoxy resin composites. Different ways of covalent and non-covalent modification methods are discussed. The various kinds of graphene coating layer are also summarized. Then we analysis the hybrid filler system in epoxy composite. We hope this review will provide guidance for the development and application of graphene-filled epoxy resin composites. 展开更多
关键词 graphene epoxy compositeS Thermal conductivity
下载PDF
A graphene-enhanced high-barrier and fast-curing film for deep in situ condition preserved coring in coal seams
7
作者 Dongsheng Yang Zhiyu Zhao +4 位作者 Yifan Wu Liangyu Zhu Jingli Lu Tao Liu Heping Xie 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第11期1365-1376,共12页
Scientific research on deep in situ resources is highly important to the theory and technology system construction for deep in-situ resource exploitation.To obtain high-condition preserved core samples,it is vital to ... Scientific research on deep in situ resources is highly important to the theory and technology system construction for deep in-situ resource exploitation.To obtain high-condition preserved core samples,it is vital to maintain the original material,humidity and luminous flux information inside the core.Therefore,this study proposes a research and development strategy for a high-toughness and highbarrier sealing film based on the molecular structure design and filler synergistic enhancement via a deep solid-state sealing film using in situ substance preservation(ISP),in situ moisture preservation(IMP)and in situ light preservation(ILP)coring principles.A graphene/epoxy composite sealing film with a high barrier,high strength and high toughness was developed.The oxygen permeability of the film was 0.23 cm^(3)/(m^(2)·d),the water vapor permeability was 1.26 g/(m^(2)·d),and the light transmittance was 0.The tensile strength reached 15.4 MPa,and the toughness was 5242.9 kJ/m^(3).The results from the film substance and moisture preservation performance verification experiments showed that the sealing film had an excellent sealing effect on small molecules,such as water,alkanes and even ions,which further verified that the sealing film greatly contributed to the maintenance and preservation of deep in-situ resource reserves and abundance. 展开更多
关键词 ISP-IMP-ILP-coring graphene/epoxy resin composites Sealing film
下载PDF
3D Lamellar-Structured Graphene Aerogels for Thermal Interface Composites with High Through-Plane Thermal Conductivity and Fracture Toughness 被引量:10
8
作者 Pengfei Liu Xiaofeng Li +4 位作者 Peng Min Xiyuan Chang Chao Shu Yun Ding Zhong-Zhen Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第2期13-27,共15页
Although thermally conductive graphene sheets are efficient in enhancing in-plane thermal conductivities of polymers,the resulting nanocomposites usually exhibit low through-plane thermal conductivities,limiting their... Although thermally conductive graphene sheets are efficient in enhancing in-plane thermal conductivities of polymers,the resulting nanocomposites usually exhibit low through-plane thermal conductivities,limiting their application as thermal interface materials.Herein,lamellarstructured polyamic acid salt/graphene oxide(PAAS/GO)hybrid aerogels are constructed by bidirectional freezing of PAAS/GO suspension followed by lyophilization.Subsequently,PAAS monomers are polymerized to polyimide(PI),while GO is converted to thermally reduced graphene oxide(RGO)during thermal annealing at 300℃.Final graphitization at 2800℃ converts PI to graphitized carbon with the inductive effect of RGO,and simultaneously,RGO is thermally reduced and healed to high-quality graphene.Consequently,lamellar-structured graphene aerogels with superior through-plane thermal conduction capacity are fabricated for the first time,and its superior through-plane thermal conduction capacity results from its vertically aligned and closely stacked high-quality graphene lamellae.After vacuum-assisted impregnation with epoxy,the resultant epoxy composite with 2.30 vol% of graphene exhibits an outstanding through-plane thermal conductivity of as high as 20.0 W m^−1 K^−1,100 times of that of epoxy,with a record-high specific thermal conductivity enhancement of 4310%.Furthermore,the lamellar-structured graphene aerogel endows epoxy with a high fracture toughness,~1.71 times of that of epoxy. 展开更多
关键词 Anisotropic aerogels graphene Thermal conductivity epoxy composites Fracture toughness
下载PDF
Electrical and optical properties of indium tin oxide/epoxy composite film 被引量:1
9
作者 郭霞 郭春威 +1 位作者 陈宇 苏治平 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第7期601-604,共4页
The electrical and optical properties of the indium tin oxide (ITO)/epoxy composite exhibit dramatic variations as functions of the ITO composition and ITO particle size. Sharp increases in the conductivity in the v... The electrical and optical properties of the indium tin oxide (ITO)/epoxy composite exhibit dramatic variations as functions of the ITO composition and ITO particle size. Sharp increases in the conductivity in the vicinity of a critical volume fraction have been found within the framework of percolation theory. A conductive and insulating transition model is extracted by the ITO particle network in the SEM image, and verified by the resistivity dependence on the temperature. The dependence of the optical transmittance on the particle size was studied. Further decreasing the ITO particle size could further improve the percolation threshold and light transparency of the composite film. 展开更多
关键词 percolation effect indium tin oxide/epoxy composite film electrical state transition optical transmittance
下载PDF
基于MAPbI_(3)/Graphene/Si复合结构的高灵敏宽带太赫兹调制器
10
作者 赖伟恩 邬宗冬 +2 位作者 李力奇 刘根 方彦俊 《物理学报》 SCIE EI CAS CSCD 北大核心 2023年第15期204-211,共8页
高性能硅基太赫兹调制器是构建超宽带太赫兹-光纤混合通信系统的关键器件之一.提出了一种基于钙钛矿/石墨烯/硅(MAPbI_(3)/Graphene/Si)复合结构的近红外光驱动的超宽带大调制深度太赫兹调制器.实验结果表明,石墨烯薄膜和钙钛矿空穴传... 高性能硅基太赫兹调制器是构建超宽带太赫兹-光纤混合通信系统的关键器件之一.提出了一种基于钙钛矿/石墨烯/硅(MAPbI_(3)/Graphene/Si)复合结构的近红外光驱动的超宽带大调制深度太赫兹调制器.实验结果表明,石墨烯薄膜和钙钛矿空穴传输层在近红外光驱动下可有效地促进界面电荷分离,增大载流子复合寿命,显著增强器件的表面电导率,进一步调控太赫兹波的传输幅度,实现光控型太赫兹波调制器的功能.通过波长808 nm的近红外调制激励源,对器件在0.2—2.5 THz超宽频率范围的太赫兹透射特性进行表征,实验用6.1 mW/mm^(2)的低功率密度近红外光驱动下实现了高达88.3%的大调制深度,远高于裸硅基底的调制深度(约14.0%),具有高灵敏、宽带和大调制深度等显著优势,并且建立了相应的半解析器件模型,仿真验证了实验结果.所提出的MAPbI_(3)/Graphene复合薄膜在增强硅基调制器性能方面效果显著,为未来实现硅基太赫兹调制器在近红外太赫兹-光纤混合通信系统的集成提供了一种新策略. 展开更多
关键词 太赫兹调制器 MAPbI_(3)/graphene 复合薄膜 近红外光驱动 高灵敏
下载PDF
Composite bilayer films with organic compound-triggered bending properties
11
作者 Ke Deng Zhuang Liu +6 位作者 Jiaqi Hu Wenying Liu Lei Zhang Rui Xie Xiaojie Ju WeiWang Liangyin Chu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第10期2587-2595,共9页
Organic compounds are widely used in both industry and daily life,and composite bilayer films with organic compound-triggered bending properties are promising for applications of transducers,soft robotics,and so on.He... Organic compounds are widely used in both industry and daily life,and composite bilayer films with organic compound-triggered bending properties are promising for applications of transducers,soft robotics,and so on.Here,a universal and straightforward strategy to generate composite bilayer films with organic compoundtriggered bending properties is demonstrated.The composite bilayer films with organic compound-triggered bending properties are designed with bilayer structures,in which one layer is a porous polymeric membrane with appropriate solubility parameter that matches the value of organic solvents in order to produce prominent affinity to the solvent molecules,and the other layer is reduced graphene oxide membrane stacked on the porous polymeric membrane as an inert layer for restraining the swelling of the polymeric membrane on one side.Guided by matching the solubility parameters between solvent and polymer,a significant bending curvature of 27.3 cm-1 is obtained in acetone vapor.The results in this study will provide valuable guidance for designing and developing functional composite materials with significant organic compound-triggered bending properties. 展开更多
关键词 RESPONSIVE materials composite BILAYER filmS Organic compound-triggered BENDING graphene Porous POLYMERIC membranes
下载PDF
Reduction Band Gap Energy of TiO<sub>2</sub>Assembled with Graphene Oxide Nanosheets 被引量:1
12
作者 Abdelmajid Timoumi 《Graphene》 2018年第4期31-38,共8页
This research work aims to reduce the band gap of thin layers of titanium oxide by the incorporation of graphene oxide sheets. Thin layers of the TiO2-GO composites were prepared on a glass substrate by the spin-coati... This research work aims to reduce the band gap of thin layers of titanium oxide by the incorporation of graphene oxide sheets. Thin layers of the TiO2-GO composites were prepared on a glass substrate by the spin-coating technique from GO and an aqueous solution of TiO2. A significant decrease in optical band gap was observed at the TiO2-GO compound compared to that of pure TiO2. Samples as prepared were characterized using XRD, SEM and UV-visible spectra. XRD analysis revealed the amorphous nature of the deposited layers. Scanning electron microscope reveals the dispersion of graphene nanofiles among titanium oxide nanoparticles distributed at the surface with an almost uniform size distribution. The band gap has been calculated and is around 2 eV after incorporation of Graphene oxide. The chemical bond C-Ti between the titanium oxide and graphene sheets is at the origin of this reduction. 展开更多
关键词 Titanium (IV) OXIDE graphene OXIDE TiO2-GO Thin films composite Materials
下载PDF
石墨烯/碳纳米管复合电热膜制备过程工艺优化及预测模型
13
作者 杨春梅 孙国玉 +3 位作者 田心池 曲文 张子浩 张佳薇 《包装工程》 CAS 北大核心 2024年第1期91-100,共10页
目的本文利用响应面法和神经网络遗传算法对石墨烯/碳纳米管复合电热膜的固化工艺进行优化,并对2种方法的优化结果进行比较,为复合电热膜制备提供了最佳的工艺参数。方法通过单因素实验探讨浆料定量、固化温度和固化时间对复合电热膜体... 目的本文利用响应面法和神经网络遗传算法对石墨烯/碳纳米管复合电热膜的固化工艺进行优化,并对2种方法的优化结果进行比较,为复合电热膜制备提供了最佳的工艺参数。方法通过单因素实验探讨浆料定量、固化温度和固化时间对复合电热膜体积电阻率的影响,在此基础上进行BB试验设计,在BB试验结果上进行响应面法(RSM)和BP神经网络分析及优化。结果单因素实验结果表示随电热膜定量增加,体积电阻率先下降后上升,随着固化温度的升高或固化时间增加,体积电阻率逐渐下降直至趋于稳定。对BB响应面法和GA-BP遗传神经网络法优化获得的最佳工艺进行实验验证,GA-BP遗传神经网络模型优化的结果相对误差较小为1.06%,因此得出最佳固化工艺参数:定量为0.056 g/cm^(2)、固化温度为85.71℃、固化时间为11.13 h。该研究结果对石墨烯碳纳米管复合电热膜的制备工艺具有参考价值。结论通过响应面方差分析表明,定量、固化温度和固化时间三因素对体积电阻率既有显著的线性影响,也有极其显著的平方影响。BP神经网络预测模型的准确性很好,可用于石墨烯/碳纳米管复合电热膜体积电阻率的预测。 展开更多
关键词 石墨烯 碳纳米管 复合电热膜制备 工艺优化
下载PDF
环氧树脂/石墨烯复合材料的制备及其性能
14
作者 李延春 赵淼 +1 位作者 姚珊珊 金范龙 《合成树脂及塑料》 CAS 北大核心 2024年第1期8-11,共4页
为提高环氧树脂的导电性能和电磁屏蔽性能,将石墨烯作为导电填料添加到环氧树脂中制备了环氧树脂/石墨烯复合材料,并研究了石墨烯含量对复合材料力学性能及微观形貌的影响。结果表明:添加石墨烯使复合材料的电导率和电磁屏蔽效率显著提... 为提高环氧树脂的导电性能和电磁屏蔽性能,将石墨烯作为导电填料添加到环氧树脂中制备了环氧树脂/石墨烯复合材料,并研究了石墨烯含量对复合材料力学性能及微观形貌的影响。结果表明:添加石墨烯使复合材料的电导率和电磁屏蔽效率显著提高。石墨烯含量为10.0%(w)时,复合材料的电导率和电磁屏蔽效率分别为1.34×10^(-3)S/m,2.95 dB;石墨烯含量为7.5%(w)时,复合材料的冲击强度为1.67 kJ/m^(2),较纯环氧树脂提高了50%。 展开更多
关键词 石墨烯 环氧树脂 复合材料 电导率 电磁屏蔽
下载PDF
Freestanding reduced graphene oxide/sodium vanadate composite films for flexible aqueous zinc-ion batteries 被引量:5
15
作者 Fang Wan Xinyu Wang +2 位作者 Songshan Bi Zhiqiang Niu Jun Chen 《Science China Chemistry》 SCIE EI CAS CSCD 2019年第5期609-615,共7页
With the booming development of portable and wearable electronic devices, flexible energy storage devices have attracted great attention. Among various energy storage devices, aqueous zinc ion batteries(ZIBs) are one ... With the booming development of portable and wearable electronic devices, flexible energy storage devices have attracted great attention. Among various energy storage devices, aqueous zinc ion batteries(ZIBs) are one of the promising candidates due to their low cost, good safety, high energy and power densities. However, the conventional cathodes of aqueous ZIBs were often prepared by mixing active materials with binders and conductive additives and then coating them onto current collectors. The resultant cathodes often suffer from unsatisfied flexibility. Herein, we fabricated freestanding reduced graphene oxide/NaV_3O_8·1.5H_2O(RGO/NVO) composite films with interlinked multilayered architecture by a vacuum filtrating process. Such composite films exhibit excellent mechanical property and high electronic conductivity. Owing to unique architecture, they display a high capacity of 410 mA h g^(-1) and excellent cycling performance up to 2000 cycles with a high capacity retention of 94%. Moreover, RGO/NVO composite films can directly serve as the cathodes of flexible aqueous ZIBs. As a proof of concept,flexible ZIBs were assembled based on the composite films. Impressively, they exhibit stable performance at different bending states, demonstrating great potential application in flexible energy storage devices. 展开更多
关键词 zinc-ion battery graphene NaV3O8·1.5H2O composite film FLEXIBILITY
原文传递
Fiber-reinforced Three-dimensional Graphene Aerogels for Electrically Conductive Epoxy Composites with Enhanced Mechanical Properties 被引量:3
16
作者 Fang-Lan Guan Fei An +3 位作者 Jing Yang 李晓锋 Xing-Hua Li 于中振 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2017年第11期1381-1390,共10页
To enhance the mechanical properties of three-dimensional graphene aerogels with aramid fibers, graphene/organic fiber aerogels are prepared by chemical reduction of graphene oxide in the presence of organic fibers of... To enhance the mechanical properties of three-dimensional graphene aerogels with aramid fibers, graphene/organic fiber aerogels are prepared by chemical reduction of graphene oxide in the presence of organic fibers of poly(p-phenylene terephthalamide) (PPTA) and followed by freeze-drying. Thermal annealing of the composite aerogels at 1300℃ is adopted not only to restore the conductivity of the reduced graphene oxide component but also to convert the insulating PPTA organic fibers to conductive carbon fibers by the carbonization. The resultant graphene/carbon fiber aerogels (GCFAs) exhibit high electrical conductivities and enhanced compressive properties, which are highly efficient in improving both mechanical and electrical performances of epoxy composites. Compared to those of neat epoxy, the compressive modulus, compressive strength and energy absorption of the electrically conductive GCFA/epoxy composite are significantly increased by 60%, 59% and 131%, respectively. 展开更多
关键词 Electrical conductivity Mechanical properties graphene aerogels epoxy composites Thermal annealing
原文传递
Enhanced tribological properties of aligned graphene-epoxy composites 被引量:2
17
作者 Yuefeng DU Zhenyu ZHANG +8 位作者 Dong WANG Lezhen ZHANG Junfeng CUI Yapeng CHEN Mingliang WU Ruiyang KANG Yunxiang LU Jinhong YU Nan JIANG 《Friction》 SCIE EI CAS CSCD 2022年第6期854-865,共12页
The random distribution of graphene in epoxy matrix hinders the further applications of grapheneepoxy composites in the field of tribology.Hence,in order to fully utilize the anisotropic properties of graphene,highly ... The random distribution of graphene in epoxy matrix hinders the further applications of grapheneepoxy composites in the field of tribology.Hence,in order to fully utilize the anisotropic properties of graphene,highly aligned graphene-epoxy composites(AGEC)with horizontally oriented structure have been fabricated via an improved vacuum filtration freeze-drying method.The frictional tests results indicated that the wear rate of AGEC slowly increased from 5.19x10^(-6)mm^(3)/(N-m)to 2.87x10^(-5)mm^(3)/(N-m)with the increasing of the normal load from 2 to 10 N,whereas the friction coefficient(COF)remained a constant of 0.109.Compared to the neat epoxy and random graphene-epoxy composites(RGEC),the COF of AGEC was reduced by 87.5%and 71.2%,and the reduction of wear rate was 86.6%and 85.4%at most,respectively.Scanning electron microscope(SEM)observations illustrated that a compact graphene self-lubricant film was formed on the worn surface of AGEC,which enables AGEC to possess excellent tribological performance.Finally,in light of the excellent tribological properties of AGEC,this study highlights a pathway to expand the tribological applications of graphene-epoxy composites. 展开更多
关键词 graphene ALIGNED epoxy composite tribological performance
原文传递
PEO/rGO复合电热膜的制备及电热性能研究
18
作者 张丽辉 郭锐 +3 位作者 刘亚宁 王冰佳 童博 夏阳 《化工新型材料》 CAS CSCD 北大核心 2024年第6期83-88,93,共7页
采用导电性能优异的还原氧化石墨烯(rGO)为导电填料,以高分子聚合物聚氧化乙烯(PEO)为粘结剂,以N-甲基-2-吡咯烷酮(NMP)为溶剂配制成导电浆料,通过刮涂法高温固化得到聚氧化乙烯/还原氧化石墨烯(PEO/rGO)复合电热膜。通过X射线衍射仪、... 采用导电性能优异的还原氧化石墨烯(rGO)为导电填料,以高分子聚合物聚氧化乙烯(PEO)为粘结剂,以N-甲基-2-吡咯烷酮(NMP)为溶剂配制成导电浆料,通过刮涂法高温固化得到聚氧化乙烯/还原氧化石墨烯(PEO/rGO)复合电热膜。通过X射线衍射仪、扫描电子显微镜、傅里叶变换红外光谱仪对复合电热膜进行分析表征,并测试了其电学特性和电加热性能。结果表明:PEO/rGO复合电热膜的方阻随着rGO含量的增加而逐渐下降,且方阻的下降速度由快到慢;PEO/rGO复合电热膜的升温速度随着导电填料rGO含量的增加逐渐变缓;当rGO含量较多、PEO含量较少时,会造成升温速率下降,也会造成电热平台不稳定;当rGO质量分数为20%时,在施加18V直流电压下复合电热膜可快速升温至43℃,并且表现出平稳的电热平台和较高的电加热效率,能够满足低温高效率复合电热膜的使用要求。 展开更多
关键词 聚氧化乙烯 还原氧化石墨烯 电热膜 复合材料
下载PDF
非共价改性石墨烯的制备及环氧树脂复合材料导热性能
19
作者 董育民 姜昀良 +3 位作者 熊勇 周建萍 胡智为 梁红波 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2024年第3期143-152,共10页
采用非共价键表面修饰制备了聚乙烯吡咯烷酮(PVP)改性的石墨烯(GR@PVP),通过共混方式将其作为填料与环氧树脂(EP)复合得到了不同填充量的EP/GR复合材料。红外光谱和热重分析结果表明,聚乙烯吡咯烷酮成功接枝到石墨烯表面。动态力学热分... 采用非共价键表面修饰制备了聚乙烯吡咯烷酮(PVP)改性的石墨烯(GR@PVP),通过共混方式将其作为填料与环氧树脂(EP)复合得到了不同填充量的EP/GR复合材料。红外光谱和热重分析结果表明,聚乙烯吡咯烷酮成功接枝到石墨烯表面。动态力学热分析和热性能测试结果表明,EP/GR@PVP复合材料的储能模量、玻璃化转变温度和损耗因子峰高度均比EP/GR复合材料有所降低,表明聚乙烯吡咯烷酮增强了环氧树脂复合材料的柔韧性。采用扫描电子显微镜观察复合材料断面形貌,GR@PVP在环氧树脂中分散均匀,且与基体相容性好。当填料质量分数为2.0%时,EP/GR@PVP复合材料的热导率比纯EP和EP/GR复合材料分别提高了205.3%和52.6%,25℃EP复合材料的表观黏度为13.29 Pa·s,符合电子封装材料对复合材料加工黏度的需求(<20 Pa·s)。其研究为进一步制备高导热、低黏度的电子封装材料提供了一种简便的方法。 展开更多
关键词 石墨烯 环氧树脂 聚乙烯吡咯烷酮 复合材料 导热
下载PDF
宽温域环境环氧/聚氨酯复合材料摩擦学性能研究
20
作者 雷雪梅 齐慧敏 +1 位作者 谷建臻 余家欣 《表面技术》 EI CAS CSCD 北大核心 2024年第7期64-75,共12页
目的考察环氧/聚氨酯(EP/PU)互穿网络复合材料在宽温域环境中的摩擦学性能,以及氧化石墨烯(GO)的添加对其摩擦学性能的影响。方法制备EP、EP/GO、EP/PU、EP/PU/GO等4种材料,其中EP和PU的质量配比为3︰1,GO的质量分数为1.0%。分别研究4... 目的考察环氧/聚氨酯(EP/PU)互穿网络复合材料在宽温域环境中的摩擦学性能,以及氧化石墨烯(GO)的添加对其摩擦学性能的影响。方法制备EP、EP/GO、EP/PU、EP/PU/GO等4种材料,其中EP和PU的质量配比为3︰1,GO的质量分数为1.0%。分别研究4种材料的热力学性能,并采用高低温摩擦试验机对比研究常温和–100、–50、50、100℃下GO对EP/PU互穿网络材料摩擦磨损的影响。结果热力学性能结果表明,PU的加入降低了起始分解温度,而加入GO,热分解起始温度有所提升,EP的拉伸强度最高约为90MPa。室温条件下,200r/min时,样品的摩擦因数和磨损率要优于400、500r/min,其中,EP/PU/GO在200 r/min时的摩擦因数最低,为0.03。同样地,在–50、50、100℃时,相对于EP、EP/GO和EP/PU,EP/PU/GO也表现出优异的润滑性和耐磨性。SEM及XPS结果表明,摩擦氧化和螯合反应促进了转移膜的生长,形成了均匀结构的转移膜,可避免摩擦副的直接接触,有利于润滑作用。结论添加GO可以有效改善材料的力学性能,提高EP/PU的摩擦学性能。 展开更多
关键词 环氧/聚氨酯互穿网络 氧化石墨烯 高低温 摩擦学性能 转移膜
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部