The rapid development of flexible electronic devices requires the design of flexible energy-storage devices. Lithium-sulfur(Li-S) batteries are attracting much interest due to their high energy density. Therefore, fle...The rapid development of flexible electronic devices requires the design of flexible energy-storage devices. Lithium-sulfur(Li-S) batteries are attracting much interest due to their high energy density. Therefore, flexible Li-S batteries with high areal capacity are desired. Herein, we fabricated freestanding reduced graphene oxide-sulfur(RGO@S) composite films with a cross-linked structure using a blade coating technique, followed by a subsequent chemical reduction. The porous cross-linked structure endows the composite films with excellent electrochemical performance. The batteries based on RGO@S composite films could exhibit a high discharge capacity of 1381 m Ah/g at 0.1 C and excellent cycle stability. Furthermore, the freestanding composite film possesses excellent conductivity and high mechanical strength. Therefore, they can be used as the cathodes of flexible Li-S batteries. As a proof of concept, soft-packaged Li-S batteries were assembled and remained stable electrochemical performance under different bending states.展开更多
With the rapid development of the electronic industry, the requirements for packaging materials with high thermal conductivity(TC) are getting higher and higher. Epoxy is widely used as package material for electronic...With the rapid development of the electronic industry, the requirements for packaging materials with high thermal conductivity(TC) are getting higher and higher. Epoxy is widely used as package material for electronic package applications. But it’s intrinsic TC can’t meets the increasing demands. Adding high TC graphene into epoxy matrix is a proper way to reinforce epoxy composites. This review focuses on the filler modification,preparation process and thermal properties of graphene-filled epoxy resin composites. Different ways of covalent and non-covalent modification methods are discussed. The various kinds of graphene coating layer are also summarized. Then we analysis the hybrid filler system in epoxy composite. We hope this review will provide guidance for the development and application of graphene-filled epoxy resin composites.展开更多
Microwave absorption (MWA) materials such as graphene nanoplatelet (GNP)/epoxy are mostly used as coatings on existing structures without considering mechanical properties. In this work, we aim to enhance the mechanic...Microwave absorption (MWA) materials such as graphene nanoplatelet (GNP)/epoxy are mostly used as coatings on existing structures without considering mechanical properties. In this work, we aim to enhance the mechanical strength of the composite for multifunctional potentials. We used carbon fiber (four layers) to reinforce GNP/epoxy composite (2 mm thick) and investigated their multifunctional properties with GNP loading from 3 to 7 wt%. We measured the tensile strength, hardness, and MW absorption (26.5 - 40 GHz) of composite samples. Our results showed an increase in tensile strength to 109.1 ± 7.9 MPa with 7 wt% GNP in the composite from 15.3 MPa for pure epoxy. The hardness of the composites was also substantially enhanced with GNP loading up to 7 wt%. A MW absorption ratio of 72% was attained for the sample with 7 wt% GNP loading near 40 GHz. The homogenous dispersion of GNPs in the matrix reduces the stress concentration and minimizes the influence of the defects. The high MW absorption and large transmission loss together with enhanced mechanical strength provides a novel multifunctional material for potential applications.展开更多
Graphene nanoplatelets (GNPs) are novel nanofillers holding attractive characteristics, including vigorous compatibility with majority polymers, outstanding mechanical, thermal, and electrical properties. In this stud...Graphene nanoplatelets (GNPs) are novel nanofillers holding attractive characteristics, including vigorous compatibility with majority polymers, outstanding mechanical, thermal, and electrical properties. In this study, the outstanding GNPs filler was reinforced to the epoxy matrix and carbon fabric/epoxy hybrid composite slabs to enrich their mechanical properties. Graphene nanoplatelets of 0.5, 1, 1.5 and 2 weight percentages were integrated into the epoxy and the physico-mechanical (microstructure, density, tensile, flexural and impact strength) properties were investigated. Furthermore, the mechanical properties of unfilled and 1 wt% GNPs filled carbon fabric/epoxy hybrid composite slabs were investigated. Subsequently, noteworthy improvement in the mechanical properties was conquered for the carbon fabric/epoxy hybrid composites.展开更多
Nanocellulose has served as an eye-catching nanomaterial for constructing advanced functional devices with renewability,light weight,flexibility,and environmental friendliness.In this study,Co_(3)O_(4)/graphene/cellul...Nanocellulose has served as an eye-catching nanomaterial for constructing advanced functional devices with renewability,light weight,flexibility,and environmental friendliness.In this study,Co_(3)O_(4)/graphene/cellulose nanofiber(CNF)flexible composite films,in which the CNF acted as a spacer for the graphene,were prepared via a facile and scalable vacuum filtration method.The effects of the CNF on the microstructure,hydrophilicity,thermal stability,tensile strength,surface resistance,and electrochemical performance of the Co_(3)O_(4)/graphene/CNF composite films were systematically investigated.The results showed that the synergistic interaction of the CNF and graphene substantially improved the overall properties of the Co_(3)O_(4)/graphene/CNF composite films,particularly their hydrophilicity and tensile strength.Meanwhile,Co_(3)O_(4)/graphene/CNF composite films with a CNF content of 4%appeared to have the optimal electrochemical performance,with an area specific capacitance of 56 mF/cm^(2) and prominent capacitance retention of 95.6%at a current density of 1 A/g after 1000 cycles.This work demonstrated that the prepared Co_(3)O_(4)/graphene/CNF flexible composite films have great application potential in the field of flexible energy storage devices.展开更多
Due to its great strength, hardness, and chemical resistance, epoxy adhesives are becoming more and more used. They continue to have drawbacks, nevertheless, such as poor thermal stability, and poor electrical conduct...Due to its great strength, hardness, and chemical resistance, epoxy adhesives are becoming more and more used. They continue to have drawbacks, nevertheless, such as poor thermal stability, and poor electrical conductivity. Two-dimensional graphene is a wonderful substance with exceptional qualities including high strength, high electrical conductivity, and large surface area. Because of these characteristics, graphene has been thoroughly researched for its prospective uses in a variety of industries, including electronics, energy storage, and biomedical engineering. The use of graphene as an additive in epoxy adhesives to enhance the characteristics of such materials is one of its promising uses. This paper reviewed the latest findings about graphene’s effects on epoxy adhesives. The various methods to produce graphene-epoxy composites and their improvements are discussed. This research additionally discusses the challenges associated with the production and processing of graphene-epoxy composites, as well as the mechanisms behind the improvements in mechanical, electrical, and thermal characteristics. The final section of this review discusses the challenges and prospective uses of graphene in epoxy adhesives in the future.展开更多
Although thermally conductive graphene sheets are efficient in enhancing in-plane thermal conductivities of polymers,the resulting nanocomposites usually exhibit low through-plane thermal conductivities,limiting their...Although thermally conductive graphene sheets are efficient in enhancing in-plane thermal conductivities of polymers,the resulting nanocomposites usually exhibit low through-plane thermal conductivities,limiting their application as thermal interface materials.Herein,lamellarstructured polyamic acid salt/graphene oxide(PAAS/GO)hybrid aerogels are constructed by bidirectional freezing of PAAS/GO suspension followed by lyophilization.Subsequently,PAAS monomers are polymerized to polyimide(PI),while GO is converted to thermally reduced graphene oxide(RGO)during thermal annealing at 300℃.Final graphitization at 2800℃ converts PI to graphitized carbon with the inductive effect of RGO,and simultaneously,RGO is thermally reduced and healed to high-quality graphene.Consequently,lamellar-structured graphene aerogels with superior through-plane thermal conduction capacity are fabricated for the first time,and its superior through-plane thermal conduction capacity results from its vertically aligned and closely stacked high-quality graphene lamellae.After vacuum-assisted impregnation with epoxy,the resultant epoxy composite with 2.30 vol% of graphene exhibits an outstanding through-plane thermal conductivity of as high as 20.0 W m^−1 K^−1,100 times of that of epoxy,with a record-high specific thermal conductivity enhancement of 4310%.Furthermore,the lamellar-structured graphene aerogel endows epoxy with a high fracture toughness,~1.71 times of that of epoxy.展开更多
The electrical and optical properties of the indium tin oxide (ITO)/epoxy composite exhibit dramatic variations as functions of the ITO composition and ITO particle size. Sharp increases in the conductivity in the v...The electrical and optical properties of the indium tin oxide (ITO)/epoxy composite exhibit dramatic variations as functions of the ITO composition and ITO particle size. Sharp increases in the conductivity in the vicinity of a critical volume fraction have been found within the framework of percolation theory. A conductive and insulating transition model is extracted by the ITO particle network in the SEM image, and verified by the resistivity dependence on the temperature. The dependence of the optical transmittance on the particle size was studied. Further decreasing the ITO particle size could further improve the percolation threshold and light transparency of the composite film.展开更多
Organic compounds are widely used in both industry and daily life,and composite bilayer films with organic compound-triggered bending properties are promising for applications of transducers,soft robotics,and so on.He...Organic compounds are widely used in both industry and daily life,and composite bilayer films with organic compound-triggered bending properties are promising for applications of transducers,soft robotics,and so on.Here,a universal and straightforward strategy to generate composite bilayer films with organic compoundtriggered bending properties is demonstrated.The composite bilayer films with organic compound-triggered bending properties are designed with bilayer structures,in which one layer is a porous polymeric membrane with appropriate solubility parameter that matches the value of organic solvents in order to produce prominent affinity to the solvent molecules,and the other layer is reduced graphene oxide membrane stacked on the porous polymeric membrane as an inert layer for restraining the swelling of the polymeric membrane on one side.Guided by matching the solubility parameters between solvent and polymer,a significant bending curvature of 27.3 cm-1 is obtained in acetone vapor.The results in this study will provide valuable guidance for designing and developing functional composite materials with significant organic compound-triggered bending properties.展开更多
Scientific research on deep in situ resources is highly important to the theory and technology system construction for deep in-situ resource exploitation.To obtain high-condition preserved core samples,it is vital to ...Scientific research on deep in situ resources is highly important to the theory and technology system construction for deep in-situ resource exploitation.To obtain high-condition preserved core samples,it is vital to maintain the original material,humidity and luminous flux information inside the core.Therefore,this study proposes a research and development strategy for a high-toughness and highbarrier sealing film based on the molecular structure design and filler synergistic enhancement via a deep solid-state sealing film using in situ substance preservation(ISP),in situ moisture preservation(IMP)and in situ light preservation(ILP)coring principles.A graphene/epoxy composite sealing film with a high barrier,high strength and high toughness was developed.The oxygen permeability of the film was 0.23 cm^(3)/(m^(2)·d),the water vapor permeability was 1.26 g/(m^(2)·d),and the light transmittance was 0.The tensile strength reached 15.4 MPa,and the toughness was 5242.9 kJ/m^(3).The results from the film substance and moisture preservation performance verification experiments showed that the sealing film had an excellent sealing effect on small molecules,such as water,alkanes and even ions,which further verified that the sealing film greatly contributed to the maintenance and preservation of deep in-situ resource reserves and abundance.展开更多
This research work aims to reduce the band gap of thin layers of titanium oxide by the incorporation of graphene oxide sheets. Thin layers of the TiO2-GO composites were prepared on a glass substrate by the spin-coati...This research work aims to reduce the band gap of thin layers of titanium oxide by the incorporation of graphene oxide sheets. Thin layers of the TiO2-GO composites were prepared on a glass substrate by the spin-coating technique from GO and an aqueous solution of TiO2. A significant decrease in optical band gap was observed at the TiO2-GO compound compared to that of pure TiO2. Samples as prepared were characterized using XRD, SEM and UV-visible spectra. XRD analysis revealed the amorphous nature of the deposited layers. Scanning electron microscope reveals the dispersion of graphene nanofiles among titanium oxide nanoparticles distributed at the surface with an almost uniform size distribution. The band gap has been calculated and is around 2 eV after incorporation of Graphene oxide. The chemical bond C-Ti between the titanium oxide and graphene sheets is at the origin of this reduction.展开更多
With the booming development of portable and wearable electronic devices, flexible energy storage devices have attracted great attention. Among various energy storage devices, aqueous zinc ion batteries(ZIBs) are one ...With the booming development of portable and wearable electronic devices, flexible energy storage devices have attracted great attention. Among various energy storage devices, aqueous zinc ion batteries(ZIBs) are one of the promising candidates due to their low cost, good safety, high energy and power densities. However, the conventional cathodes of aqueous ZIBs were often prepared by mixing active materials with binders and conductive additives and then coating them onto current collectors. The resultant cathodes often suffer from unsatisfied flexibility. Herein, we fabricated freestanding reduced graphene oxide/NaV_3O_8·1.5H_2O(RGO/NVO) composite films with interlinked multilayered architecture by a vacuum filtrating process. Such composite films exhibit excellent mechanical property and high electronic conductivity. Owing to unique architecture, they display a high capacity of 410 mA h g^(-1) and excellent cycling performance up to 2000 cycles with a high capacity retention of 94%. Moreover, RGO/NVO composite films can directly serve as the cathodes of flexible aqueous ZIBs. As a proof of concept,flexible ZIBs were assembled based on the composite films. Impressively, they exhibit stable performance at different bending states, demonstrating great potential application in flexible energy storage devices.展开更多
To enhance the mechanical properties of three-dimensional graphene aerogels with aramid fibers, graphene/organic fiber aerogels are prepared by chemical reduction of graphene oxide in the presence of organic fibers of...To enhance the mechanical properties of three-dimensional graphene aerogels with aramid fibers, graphene/organic fiber aerogels are prepared by chemical reduction of graphene oxide in the presence of organic fibers of poly(p-phenylene terephthalamide) (PPTA) and followed by freeze-drying. Thermal annealing of the composite aerogels at 1300℃ is adopted not only to restore the conductivity of the reduced graphene oxide component but also to convert the insulating PPTA organic fibers to conductive carbon fibers by the carbonization. The resultant graphene/carbon fiber aerogels (GCFAs) exhibit high electrical conductivities and enhanced compressive properties, which are highly efficient in improving both mechanical and electrical performances of epoxy composites. Compared to those of neat epoxy, the compressive modulus, compressive strength and energy absorption of the electrically conductive GCFA/epoxy composite are significantly increased by 60%, 59% and 131%, respectively.展开更多
The random distribution of graphene in epoxy matrix hinders the further applications of grapheneepoxy composites in the field of tribology.Hence,in order to fully utilize the anisotropic properties of graphene,highly ...The random distribution of graphene in epoxy matrix hinders the further applications of grapheneepoxy composites in the field of tribology.Hence,in order to fully utilize the anisotropic properties of graphene,highly aligned graphene-epoxy composites(AGEC)with horizontally oriented structure have been fabricated via an improved vacuum filtration freeze-drying method.The frictional tests results indicated that the wear rate of AGEC slowly increased from 5.19x10^(-6)mm^(3)/(N-m)to 2.87x10^(-5)mm^(3)/(N-m)with the increasing of the normal load from 2 to 10 N,whereas the friction coefficient(COF)remained a constant of 0.109.Compared to the neat epoxy and random graphene-epoxy composites(RGEC),the COF of AGEC was reduced by 87.5%and 71.2%,and the reduction of wear rate was 86.6%and 85.4%at most,respectively.Scanning electron microscope(SEM)observations illustrated that a compact graphene self-lubricant film was formed on the worn surface of AGEC,which enables AGEC to possess excellent tribological performance.Finally,in light of the excellent tribological properties of AGEC,this study highlights a pathway to expand the tribological applications of graphene-epoxy composites.展开更多
The wear tests of titanium matrix composites(TMCs)at the loads of 50,100,120,and 150 N were carried out with an MMW-1 vertical universal friction and wear tester to study the addition of multilayer graphene(MLG)/nano-...The wear tests of titanium matrix composites(TMCs)at the loads of 50,100,120,and 150 N were carried out with an MMW-1 vertical universal friction and wear tester to study the addition of multilayer graphene(MLG)/nano-Fe2O3 composites(0,0.1,0.2,0.3,0.4,and 0.5 g)on the dry sliding wear behavior of TMCs.TMCs presented a marked variation in wear loss as a function of the amount of MLG/Fe2O3 addition,and a significant decrease in the friction coefficient was obtained,reducing this parameter up to 50%.With the rise and fall of wear loss,TMCs underwent a transition from severe wear to mild wear.These phenomena were attributed to the existence of a protective lubricating film,which prevented the surface from coming in direct contact,and the lubricating film was 15-20μm thick and made up of MLG/Fe2O3(1:2)nanocomposites.Its structure was speculated to be similar to a rolling wood.展开更多
基金supported by the National Natural Science Foundation of China(21573116 , 51822205 , 21875121 and 51602218)Ministry of Science and Technology of China(2017YFA0206701)+1 种基金Ministry of Education of China(B12015)the Young Thousand Talents Program
文摘The rapid development of flexible electronic devices requires the design of flexible energy-storage devices. Lithium-sulfur(Li-S) batteries are attracting much interest due to their high energy density. Therefore, flexible Li-S batteries with high areal capacity are desired. Herein, we fabricated freestanding reduced graphene oxide-sulfur(RGO@S) composite films with a cross-linked structure using a blade coating technique, followed by a subsequent chemical reduction. The porous cross-linked structure endows the composite films with excellent electrochemical performance. The batteries based on RGO@S composite films could exhibit a high discharge capacity of 1381 m Ah/g at 0.1 C and excellent cycle stability. Furthermore, the freestanding composite film possesses excellent conductivity and high mechanical strength. Therefore, they can be used as the cathodes of flexible Li-S batteries. As a proof of concept, soft-packaged Li-S batteries were assembled and remained stable electrochemical performance under different bending states.
基金supported by The National Key Research and Development Program of China (2020YFA0210704)。
文摘With the rapid development of the electronic industry, the requirements for packaging materials with high thermal conductivity(TC) are getting higher and higher. Epoxy is widely used as package material for electronic package applications. But it’s intrinsic TC can’t meets the increasing demands. Adding high TC graphene into epoxy matrix is a proper way to reinforce epoxy composites. This review focuses on the filler modification,preparation process and thermal properties of graphene-filled epoxy resin composites. Different ways of covalent and non-covalent modification methods are discussed. The various kinds of graphene coating layer are also summarized. Then we analysis the hybrid filler system in epoxy composite. We hope this review will provide guidance for the development and application of graphene-filled epoxy resin composites.
文摘Microwave absorption (MWA) materials such as graphene nanoplatelet (GNP)/epoxy are mostly used as coatings on existing structures without considering mechanical properties. In this work, we aim to enhance the mechanical strength of the composite for multifunctional potentials. We used carbon fiber (four layers) to reinforce GNP/epoxy composite (2 mm thick) and investigated their multifunctional properties with GNP loading from 3 to 7 wt%. We measured the tensile strength, hardness, and MW absorption (26.5 - 40 GHz) of composite samples. Our results showed an increase in tensile strength to 109.1 ± 7.9 MPa with 7 wt% GNP in the composite from 15.3 MPa for pure epoxy. The hardness of the composites was also substantially enhanced with GNP loading up to 7 wt%. A MW absorption ratio of 72% was attained for the sample with 7 wt% GNP loading near 40 GHz. The homogenous dispersion of GNPs in the matrix reduces the stress concentration and minimizes the influence of the defects. The high MW absorption and large transmission loss together with enhanced mechanical strength provides a novel multifunctional material for potential applications.
文摘Graphene nanoplatelets (GNPs) are novel nanofillers holding attractive characteristics, including vigorous compatibility with majority polymers, outstanding mechanical, thermal, and electrical properties. In this study, the outstanding GNPs filler was reinforced to the epoxy matrix and carbon fabric/epoxy hybrid composite slabs to enrich their mechanical properties. Graphene nanoplatelets of 0.5, 1, 1.5 and 2 weight percentages were integrated into the epoxy and the physico-mechanical (microstructure, density, tensile, flexural and impact strength) properties were investigated. Furthermore, the mechanical properties of unfilled and 1 wt% GNPs filled carbon fabric/epoxy hybrid composite slabs were investigated. Subsequently, noteworthy improvement in the mechanical properties was conquered for the carbon fabric/epoxy hybrid composites.
基金This work was financially supported by the National Natural Science Foundation of China(grant no.22078306)Key Research and Development Program of Zhejiang Province(grant no.2020C02021)+1 种基金521 Talent Cultivation Program of Zhejiang Sci-Tech University(grant no.11110132521310)Qujiang Science and Technology Project(grant no.QJ2020023).
文摘Nanocellulose has served as an eye-catching nanomaterial for constructing advanced functional devices with renewability,light weight,flexibility,and environmental friendliness.In this study,Co_(3)O_(4)/graphene/cellulose nanofiber(CNF)flexible composite films,in which the CNF acted as a spacer for the graphene,were prepared via a facile and scalable vacuum filtration method.The effects of the CNF on the microstructure,hydrophilicity,thermal stability,tensile strength,surface resistance,and electrochemical performance of the Co_(3)O_(4)/graphene/CNF composite films were systematically investigated.The results showed that the synergistic interaction of the CNF and graphene substantially improved the overall properties of the Co_(3)O_(4)/graphene/CNF composite films,particularly their hydrophilicity and tensile strength.Meanwhile,Co_(3)O_(4)/graphene/CNF composite films with a CNF content of 4%appeared to have the optimal electrochemical performance,with an area specific capacitance of 56 mF/cm^(2) and prominent capacitance retention of 95.6%at a current density of 1 A/g after 1000 cycles.This work demonstrated that the prepared Co_(3)O_(4)/graphene/CNF flexible composite films have great application potential in the field of flexible energy storage devices.
文摘Due to its great strength, hardness, and chemical resistance, epoxy adhesives are becoming more and more used. They continue to have drawbacks, nevertheless, such as poor thermal stability, and poor electrical conductivity. Two-dimensional graphene is a wonderful substance with exceptional qualities including high strength, high electrical conductivity, and large surface area. Because of these characteristics, graphene has been thoroughly researched for its prospective uses in a variety of industries, including electronics, energy storage, and biomedical engineering. The use of graphene as an additive in epoxy adhesives to enhance the characteristics of such materials is one of its promising uses. This paper reviewed the latest findings about graphene’s effects on epoxy adhesives. The various methods to produce graphene-epoxy composites and their improvements are discussed. This research additionally discusses the challenges associated with the production and processing of graphene-epoxy composites, as well as the mechanisms behind the improvements in mechanical, electrical, and thermal characteristics. The final section of this review discusses the challenges and prospective uses of graphene in epoxy adhesives in the future.
基金Financial support from the National Natural Science Foundation of China(51773008,51533001,U1905217)the National Key Research and Development Program of China(2016YFC0801302)is gratefully acknowledged.
文摘Although thermally conductive graphene sheets are efficient in enhancing in-plane thermal conductivities of polymers,the resulting nanocomposites usually exhibit low through-plane thermal conductivities,limiting their application as thermal interface materials.Herein,lamellarstructured polyamic acid salt/graphene oxide(PAAS/GO)hybrid aerogels are constructed by bidirectional freezing of PAAS/GO suspension followed by lyophilization.Subsequently,PAAS monomers are polymerized to polyimide(PI),while GO is converted to thermally reduced graphene oxide(RGO)during thermal annealing at 300℃.Final graphitization at 2800℃ converts PI to graphitized carbon with the inductive effect of RGO,and simultaneously,RGO is thermally reduced and healed to high-quality graphene.Consequently,lamellar-structured graphene aerogels with superior through-plane thermal conduction capacity are fabricated for the first time,and its superior through-plane thermal conduction capacity results from its vertically aligned and closely stacked high-quality graphene lamellae.After vacuum-assisted impregnation with epoxy,the resultant epoxy composite with 2.30 vol% of graphene exhibits an outstanding through-plane thermal conductivity of as high as 20.0 W m^−1 K^−1,100 times of that of epoxy,with a record-high specific thermal conductivity enhancement of 4310%.Furthermore,the lamellar-structured graphene aerogel endows epoxy with a high fracture toughness,~1.71 times of that of epoxy.
基金supported by the National Natural Science Foundation of China(Grant Nos.61222501 and 61335004)
文摘The electrical and optical properties of the indium tin oxide (ITO)/epoxy composite exhibit dramatic variations as functions of the ITO composition and ITO particle size. Sharp increases in the conductivity in the vicinity of a critical volume fraction have been found within the framework of percolation theory. A conductive and insulating transition model is extracted by the ITO particle network in the SEM image, and verified by the resistivity dependence on the temperature. The dependence of the optical transmittance on the particle size was studied. Further decreasing the ITO particle size could further improve the percolation threshold and light transparency of the composite film.
基金Supported by the National Natural Science Foundation of China(21490582,21622604)the Program for Changjiang Scholars and Innovative Research Team in University(IRT15R48)the State Key Laboratory of Polymer Materials Engineering(sklpme2017-3-03,sklpme2014-1-01).
文摘Organic compounds are widely used in both industry and daily life,and composite bilayer films with organic compound-triggered bending properties are promising for applications of transducers,soft robotics,and so on.Here,a universal and straightforward strategy to generate composite bilayer films with organic compoundtriggered bending properties is demonstrated.The composite bilayer films with organic compound-triggered bending properties are designed with bilayer structures,in which one layer is a porous polymeric membrane with appropriate solubility parameter that matches the value of organic solvents in order to produce prominent affinity to the solvent molecules,and the other layer is reduced graphene oxide membrane stacked on the porous polymeric membrane as an inert layer for restraining the swelling of the polymeric membrane on one side.Guided by matching the solubility parameters between solvent and polymer,a significant bending curvature of 27.3 cm-1 is obtained in acetone vapor.The results in this study will provide valuable guidance for designing and developing functional composite materials with significant organic compound-triggered bending properties.
基金supported by the Program for National Natural Science Foundation of China(Nos.52004166,51827901 and U2013603)Guangdong Introducing Innovative and Enterpreneurial Teams(No.2019ZT08G315).
文摘Scientific research on deep in situ resources is highly important to the theory and technology system construction for deep in-situ resource exploitation.To obtain high-condition preserved core samples,it is vital to maintain the original material,humidity and luminous flux information inside the core.Therefore,this study proposes a research and development strategy for a high-toughness and highbarrier sealing film based on the molecular structure design and filler synergistic enhancement via a deep solid-state sealing film using in situ substance preservation(ISP),in situ moisture preservation(IMP)and in situ light preservation(ILP)coring principles.A graphene/epoxy composite sealing film with a high barrier,high strength and high toughness was developed.The oxygen permeability of the film was 0.23 cm^(3)/(m^(2)·d),the water vapor permeability was 1.26 g/(m^(2)·d),and the light transmittance was 0.The tensile strength reached 15.4 MPa,and the toughness was 5242.9 kJ/m^(3).The results from the film substance and moisture preservation performance verification experiments showed that the sealing film had an excellent sealing effect on small molecules,such as water,alkanes and even ions,which further verified that the sealing film greatly contributed to the maintenance and preservation of deep in-situ resource reserves and abundance.
文摘This research work aims to reduce the band gap of thin layers of titanium oxide by the incorporation of graphene oxide sheets. Thin layers of the TiO2-GO composites were prepared on a glass substrate by the spin-coating technique from GO and an aqueous solution of TiO2. A significant decrease in optical band gap was observed at the TiO2-GO compound compared to that of pure TiO2. Samples as prepared were characterized using XRD, SEM and UV-visible spectra. XRD analysis revealed the amorphous nature of the deposited layers. Scanning electron microscope reveals the dispersion of graphene nanofiles among titanium oxide nanoparticles distributed at the surface with an almost uniform size distribution. The band gap has been calculated and is around 2 eV after incorporation of Graphene oxide. The chemical bond C-Ti between the titanium oxide and graphene sheets is at the origin of this reduction.
基金supported by the National Natural Science Foundation of China(21573116,51822205,21875121,51602218)Ministry of Science and Technology of China(2017YFA0206701)+3 种基金Ministry of Education of China(B12015)Tianjin Basic and High-Tech Development(16PTSYJC00030)the Fundamental Research Funds for the Central Universitiesthe Young Thousand Talents Program
文摘With the booming development of portable and wearable electronic devices, flexible energy storage devices have attracted great attention. Among various energy storage devices, aqueous zinc ion batteries(ZIBs) are one of the promising candidates due to their low cost, good safety, high energy and power densities. However, the conventional cathodes of aqueous ZIBs were often prepared by mixing active materials with binders and conductive additives and then coating them onto current collectors. The resultant cathodes often suffer from unsatisfied flexibility. Herein, we fabricated freestanding reduced graphene oxide/NaV_3O_8·1.5H_2O(RGO/NVO) composite films with interlinked multilayered architecture by a vacuum filtrating process. Such composite films exhibit excellent mechanical property and high electronic conductivity. Owing to unique architecture, they display a high capacity of 410 mA h g^(-1) and excellent cycling performance up to 2000 cycles with a high capacity retention of 94%. Moreover, RGO/NVO composite films can directly serve as the cathodes of flexible aqueous ZIBs. As a proof of concept,flexible ZIBs were assembled based on the composite films. Impressively, they exhibit stable performance at different bending states, demonstrating great potential application in flexible energy storage devices.
基金financially supported by the National Key Research and Development Program of China(No.2016YFC0801302)the National Natural Science Foundation of China(Nos.51403016,51533001 and 51521062)
文摘To enhance the mechanical properties of three-dimensional graphene aerogels with aramid fibers, graphene/organic fiber aerogels are prepared by chemical reduction of graphene oxide in the presence of organic fibers of poly(p-phenylene terephthalamide) (PPTA) and followed by freeze-drying. Thermal annealing of the composite aerogels at 1300℃ is adopted not only to restore the conductivity of the reduced graphene oxide component but also to convert the insulating PPTA organic fibers to conductive carbon fibers by the carbonization. The resultant graphene/carbon fiber aerogels (GCFAs) exhibit high electrical conductivities and enhanced compressive properties, which are highly efficient in improving both mechanical and electrical performances of epoxy composites. Compared to those of neat epoxy, the compressive modulus, compressive strength and energy absorption of the electrically conductive GCFA/epoxy composite are significantly increased by 60%, 59% and 131%, respectively.
文摘The random distribution of graphene in epoxy matrix hinders the further applications of grapheneepoxy composites in the field of tribology.Hence,in order to fully utilize the anisotropic properties of graphene,highly aligned graphene-epoxy composites(AGEC)with horizontally oriented structure have been fabricated via an improved vacuum filtration freeze-drying method.The frictional tests results indicated that the wear rate of AGEC slowly increased from 5.19x10^(-6)mm^(3)/(N-m)to 2.87x10^(-5)mm^(3)/(N-m)with the increasing of the normal load from 2 to 10 N,whereas the friction coefficient(COF)remained a constant of 0.109.Compared to the neat epoxy and random graphene-epoxy composites(RGEC),the COF of AGEC was reduced by 87.5%and 71.2%,and the reduction of wear rate was 86.6%and 85.4%at most,respectively.Scanning electron microscope(SEM)observations illustrated that a compact graphene self-lubricant film was formed on the worn surface of AGEC,which enables AGEC to possess excellent tribological performance.Finally,in light of the excellent tribological properties of AGEC,this study highlights a pathway to expand the tribological applications of graphene-epoxy composites.
基金The authors would like to acknowledge the financial support of this work by National Natural Science Foundation of China(No.51505199)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX19_1670).
文摘The wear tests of titanium matrix composites(TMCs)at the loads of 50,100,120,and 150 N were carried out with an MMW-1 vertical universal friction and wear tester to study the addition of multilayer graphene(MLG)/nano-Fe2O3 composites(0,0.1,0.2,0.3,0.4,and 0.5 g)on the dry sliding wear behavior of TMCs.TMCs presented a marked variation in wear loss as a function of the amount of MLG/Fe2O3 addition,and a significant decrease in the friction coefficient was obtained,reducing this parameter up to 50%.With the rise and fall of wear loss,TMCs underwent a transition from severe wear to mild wear.These phenomena were attributed to the existence of a protective lubricating film,which prevented the surface from coming in direct contact,and the lubricating film was 15-20μm thick and made up of MLG/Fe2O3(1:2)nanocomposites.Its structure was speculated to be similar to a rolling wood.