期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Near-Field Heat Transfer Enhancement of SiC-hBN-InSb Thermophotovoltaic System by Graphene Strong Coupling Effects
1
作者 XU Zhiguo HU Zhifang 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第4期1409-1420,共12页
Near-field thermophotovoltaic(NTPV)devices comprising a SiC-hBN-graphene emitter and a graphene-InSb cell with gratings are designed to enhance the performance of the NTPV systems.Fluctuational electrodynamics and rig... Near-field thermophotovoltaic(NTPV)devices comprising a SiC-hBN-graphene emitter and a graphene-InSb cell with gratings are designed to enhance the performance of the NTPV systems.Fluctuational electrodynamics and rigorous coupled-wave analysis are employed to calculate radiative heat transfer fluxes.It is found that the NTPV systems with two graphene ribbons perform better due to the graphene strong coupling effects.The effects of graphene chemical potential are discussed.It is demonstrated that near-field radiative heat transfer of thermophotovoltaic devices is enhanced by the coupling of surface plasmon polaritons,surface phonon polaritons,hyperbolic phonon polaritons,and magnetic polaritons caused by the graphene strong coupling effects.Rabi splitting frequency of different polaritons is calculated to quantify the mutual interaction of graphene strong coupling effects.Finally,the effects of cell grating filling ratio are investigated.The excitation of magnetic polaritons is affected by the graphene ribbon and the cell filling ratio.This investigation provides a new explanation of the enhancement mechanism of graphene-assisted thermophotovoltaic systems and a novel approach for improving the output power of the near-field thermophotovoltaic system. 展开更多
关键词 near-field radiative heat transfer THERMOPHOTOVOLTAICS strong coupling effect multiple magnetic polaritons graphene-hbn heterostructures
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部