期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
MHD graphene-polydimethylsiloxane Maxwell nanofluid flow in a squeezing channel with thermal radiation effects 被引量:2
1
作者 G.C.SHIT S.MUKHERJEE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第9期1269-1284,共16页
The magnetohydrodynamic (MHD) graphene-polydimethylsiloxane (PDMS) nanofluid flow between two squeezing parallel plates in the presence of thermal radiation effects is investigated. The energy efficiency of the system... The magnetohydrodynamic (MHD) graphene-polydimethylsiloxane (PDMS) nanofluid flow between two squeezing parallel plates in the presence of thermal radiation effects is investigated. The energy efficiency of the system via the Bejan number is studied extensively. The governing partial differential equations are converted by using the similarity transformations into a set of coupled ordinary differential equations. The set of these converted equations is solved by using the differential transform method (DTM). The entropy generation in terms of the Bejan number, the coefficient of skin-friction, and the heat transfer rate is furthermore investigated under the effects of various physical parameters of interest. The present study shows that the Bejan number, the velocity and thermal profiles, and the rate of heat transfer decrease with a rise in the Deborah number De while the skin-friction coefficient increases. It is also observed that the entropy generation due to frictional forces is higher than that due to thermal effects. Thus, the study bears the potential application in powder technology as well as in biomedical engineering. 展开更多
关键词 graphene-polydimethylsiloxane (PDMS) MAXWELL fluid differential transform method (DTM) THERMAL radiation Bejan number
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部