An object oriented multi robotic graphic simulation environment is described in this paper. Object oriented programming is used to model the physical objects of the robotic workcell in the form of software objects ...An object oriented multi robotic graphic simulation environment is described in this paper. Object oriented programming is used to model the physical objects of the robotic workcell in the form of software objects or classes. The virtual objects are defined to provide the user with a user friendly interface including realistic graphic simulation and clarify the software architecture. The programming method of associating the task object with active object effectively increases the software reusability, maintainability and modifiability. Task level programming is also demonstrated through a multi robot welding task that allows the user to concentrate on the most important aspects of the tasks. The multi thread programming technique is used to simulate the interaction of multiple tasks. Finally, a virtual test is carried out in the graphic simulation environment to observe design and program errors and fix them before downloading the software to the real workcell.展开更多
As computer simulation increasingly supports engine er ing design and manufacture, the requirement for a computer software environment providing an integration platform for computational engineering software increas e...As computer simulation increasingly supports engine er ing design and manufacture, the requirement for a computer software environment providing an integration platform for computational engineering software increas es. A key component of an integrated environment is the use of computational eng ineering to assist and support solutions for complex design. Computer methods fo r structural, flow and thermal analysis are well developed and have been used in design for many years. Many software packages are now available which provi de an advanced capability. However, they are not designed for modelling of powde r forming processes. This paper describes the powder compaction software (PCS_SU T), which is designed for pre- and post-processing for computational simulatio n of the process compaction of powder. In the PCS_SUT software, the adaptive analysis of transient metal powder forming process is simulated by the finite element method based on deformation theories . The error estimates and adaptive remeshing schemes are applied for updated co -ordinate analysis. A generalized Newmark scheme is used for the time domain di scretization and the final nonlinear equations are solved by a Newton-Raphson p rocedure. An incremental elasto-plastic material model is used to simulate the compaction process. To describe the constitutive model of nonlinear behaviour of powder materials, a combination of Mohr-Coulomb and elliptical yield cap model is applied. This model reflects the yielding, frictional and densification char acteristics of powder along with strain and geometrical hardening which occurs d uring the compaction process. A hardening rule is used to define the dependence of the yield surface on the degree of plastic straining. A plasticity theory for friction is employed in the treatment of the powder-tooling interface. The inv olvement of two different materials, which have contact and relative movement in relation to each other, must be considered. A special formulation for friction modelling is coupled with a material formulation. The interface behaviour betwee n the die and the powder is modelled by using an interface element mesh. In the present paper, we have demonstrated pre- and post-processor finite elem ent software, written in Visual Basic, to generate the graphical model and visua lly display the computed results. The software consist of three main part: · Pre-processor: It is used to create the model, generate an app ropriate finite element grid, apply the appropriate boundary conditions, and vie w the total model. The geometric model can be used to associate the mesh with th e physical attributes such as element properties, material properties, or loads and boundary conditions. · Analysis: It can deal with two-dimensional and axi-symmetric applications for linear and non-linear behaviour of material in static and dyna mic analyses. Both triangular and quadrilateral elements are available in the e lement library, including 3-noded, 6-noded and 7-noded (T6B1) triangles and 4 -noded, 8-noded and 9-noded quadrilaterals. The direct implicit algorithm bas ed on the generalized Newmark scheme is used for the time integration and an aut omatic time step control facility is provided. For non-linear iteration, choice s among fully or modified Newton-Raphson method and quasi-Newton method, using the initial stiffness method, Davidon inverse method or BFGS inverse method, ar e possible. · Post-processor: It provides visualization of the computed resu lts, when the finite element model and analysis have been completed. Post-proce ssing is vital to allow the appropriate interpretation of the completed results of the finite element analysis. It provides the visual means to interpret the va st amounts of computed results generated. Finally, the powder behaviour during the compaction of a multi-level component is numerically simulated by the PCS_SUT software, as shown in Fig.1. The predict ive compaction forces at different displacements are computed and compared with the available experimental展开更多
The coupled models of LBM (Lattice Boltzmann Method) and RANS (Reynolds-Averaged Navier-Stokes) are more practical for the transient simulation of mixing processes at large spatial and temporal scales such as crud...The coupled models of LBM (Lattice Boltzmann Method) and RANS (Reynolds-Averaged Navier-Stokes) are more practical for the transient simulation of mixing processes at large spatial and temporal scales such as crude oil mixing in large-diameter storage tanks. To keep the efficiency of parallel computation of LBM, the RANS model should also be explicitly solved; whereas to keep the numerical stability the implicit method should be better for PANS model. This article explores the numerical stability of explicit methods in 2D cases on one hand, and on the other hand how to accelerate the computation of the coupled model of LBM and an implicitly solved RANS model in 3D cases. To ensure the numerical stability and meanwhile avoid the use of empirical artificial lim- itations on turbulent quantities in 2D cases, we investigated the impacts of collision models in LBM (LBGK, MRT) and the numerical schemes for convection terms (WENO, TVD) and production terms (FDM, NEQM) in an explic- itly solved standard k-e model. The combination of MRT and TVD or MRT and NEQM can be screened out for the 2D simulation of backward-facing step flow even at Re = 107. This scheme combination, however, may still not guarantee the numerical stability in 3D cases and hence much finer grids are required, which is not suitable for the simulation of industrial-scale processes.Then we proposed a new method to accelerate the coupled model of LBM with RANS (implicitly solved). When implemented on multiple GPUs, this new method can achieve 13.5-fold accelera- tion relative to the original coupled model and 40-fold acceleration compared to the traditional CFD simulation based on Finite Volume (FV) method accelerated by multiple CPUs. This study provides the basis for the transient flow simulation of larger spatial and temporal scales in industrial applications with LBM-RANS methods.展开更多
This paper introduces the method of developing a simulation package with expert systemfor a flexible manufacturing system(FMS)in Windows environment and presents some sim-ulation results for real examples.
In this article,we introduce a nonlinear Caputo-type snakebite envenoming model with memory.The well-known Caputo fractional derivative is used to generalize the previously presented integer-order model into a fractio...In this article,we introduce a nonlinear Caputo-type snakebite envenoming model with memory.The well-known Caputo fractional derivative is used to generalize the previously presented integer-order model into a fractionalorder sense.The numerical solution of the model is derived from a novel implementation of a finite-difference predictor-corrector(L1-PC)scheme with error estimation and stability analysis.The proof of the existence and positivity of the solution is given by using the fixed point theory.From the necessary simulations,we justify that the first-time implementation of the proposedmethod on an epidemicmodel shows that the scheme is fully suitable and time-efficient for solving epidemic models.This work aims to show the novel application of the given scheme as well as to check how the proposed snakebite envenoming model behaves in the presence of the Caputo fractional derivative,including memory effects.展开更多
A microtubule gliding assay is a biological experiment observing the dynamics of microtubules driven by motor proteins fixed on a glass surface. When appropriate microtubule interactions are set up on gliding assay ex...A microtubule gliding assay is a biological experiment observing the dynamics of microtubules driven by motor proteins fixed on a glass surface. When appropriate microtubule interactions are set up on gliding assay experiments, microtubules often organize and create higher-level dynamics such as ring and bundle structures. In order to reproduce such higher-level dynamics on computers, we have been focusing on making a real-time 3D microtubule simulation. This real-time 3D microtubule simulation enables us to gain more knowledge on microtubule dynamics and their swarm movements by means of adjusting simulation paranleters in a real-time fashion. One of the technical challenges when creating a real-time 3D simulation is balancing the 3D rendering and the computing performance. Graphics processor unit (GPU) programming plays an essential role in balancing the millions of tasks, and makes this real-time 3D simulation possible. By the use of general-purpose computing on graphics processing units (GPGPU) programming we are able to run the simulation in a massively parallel fashion, even when dealing with more complex interactions between microtubules such as overriding and snuggling. Due to performance being an important factor, a performance n, odel has also been constructed from the analysis of the microtubule simulation and it is consistent with the performance measurements on different GPGPU architectures with regards to the number of cores and clock cycles.展开更多
Collision-free path planning for an industrtal robot in configuration space requires mapping obstacles from robot's workspace into its configuration space. In this paper ,an approach to real-time collision-free pa...Collision-free path planning for an industrtal robot in configuration space requires mapping obstacles from robot's workspace into its configuration space. In this paper ,an approach to real-time collision-free path planning for robots in configuration space is presented. Obstacle mapping is carried out by fundamental obstacles defined in the workspace and their images in the configuration space. In order to avoid dealing with unimportant parts of the configuration space that do not thect searching a collision-free path between starting and goal configurations, we construct a free subspace by slice configuration obstacles. In this free subspace, the collision-free path is determined by the A algorithm. Finally, graphical simulations show the effectiveness of the proposed approach.展开更多
文摘An object oriented multi robotic graphic simulation environment is described in this paper. Object oriented programming is used to model the physical objects of the robotic workcell in the form of software objects or classes. The virtual objects are defined to provide the user with a user friendly interface including realistic graphic simulation and clarify the software architecture. The programming method of associating the task object with active object effectively increases the software reusability, maintainability and modifiability. Task level programming is also demonstrated through a multi robot welding task that allows the user to concentrate on the most important aspects of the tasks. The multi thread programming technique is used to simulate the interaction of multiple tasks. Finally, a virtual test is carried out in the graphic simulation environment to observe design and program errors and fix them before downloading the software to the real workcell.
文摘As computer simulation increasingly supports engine er ing design and manufacture, the requirement for a computer software environment providing an integration platform for computational engineering software increas es. A key component of an integrated environment is the use of computational eng ineering to assist and support solutions for complex design. Computer methods fo r structural, flow and thermal analysis are well developed and have been used in design for many years. Many software packages are now available which provi de an advanced capability. However, they are not designed for modelling of powde r forming processes. This paper describes the powder compaction software (PCS_SU T), which is designed for pre- and post-processing for computational simulatio n of the process compaction of powder. In the PCS_SUT software, the adaptive analysis of transient metal powder forming process is simulated by the finite element method based on deformation theories . The error estimates and adaptive remeshing schemes are applied for updated co -ordinate analysis. A generalized Newmark scheme is used for the time domain di scretization and the final nonlinear equations are solved by a Newton-Raphson p rocedure. An incremental elasto-plastic material model is used to simulate the compaction process. To describe the constitutive model of nonlinear behaviour of powder materials, a combination of Mohr-Coulomb and elliptical yield cap model is applied. This model reflects the yielding, frictional and densification char acteristics of powder along with strain and geometrical hardening which occurs d uring the compaction process. A hardening rule is used to define the dependence of the yield surface on the degree of plastic straining. A plasticity theory for friction is employed in the treatment of the powder-tooling interface. The inv olvement of two different materials, which have contact and relative movement in relation to each other, must be considered. A special formulation for friction modelling is coupled with a material formulation. The interface behaviour betwee n the die and the powder is modelled by using an interface element mesh. In the present paper, we have demonstrated pre- and post-processor finite elem ent software, written in Visual Basic, to generate the graphical model and visua lly display the computed results. The software consist of three main part: · Pre-processor: It is used to create the model, generate an app ropriate finite element grid, apply the appropriate boundary conditions, and vie w the total model. The geometric model can be used to associate the mesh with th e physical attributes such as element properties, material properties, or loads and boundary conditions. · Analysis: It can deal with two-dimensional and axi-symmetric applications for linear and non-linear behaviour of material in static and dyna mic analyses. Both triangular and quadrilateral elements are available in the e lement library, including 3-noded, 6-noded and 7-noded (T6B1) triangles and 4 -noded, 8-noded and 9-noded quadrilaterals. The direct implicit algorithm bas ed on the generalized Newmark scheme is used for the time integration and an aut omatic time step control facility is provided. For non-linear iteration, choice s among fully or modified Newton-Raphson method and quasi-Newton method, using the initial stiffness method, Davidon inverse method or BFGS inverse method, ar e possible. · Post-processor: It provides visualization of the computed resu lts, when the finite element model and analysis have been completed. Post-proce ssing is vital to allow the appropriate interpretation of the completed results of the finite element analysis. It provides the visual means to interpret the va st amounts of computed results generated. Finally, the powder behaviour during the compaction of a multi-level component is numerically simulated by the PCS_SUT software, as shown in Fig.1. The predict ive compaction forces at different displacements are computed and compared with the available experimental
基金Supported by the National Key Research and Development Program of China(2017YFB0602500)National Natural Science Foundation of China(91634203 and91434121)Chinese Academy of Sciences(122111KYSB20150003)
文摘The coupled models of LBM (Lattice Boltzmann Method) and RANS (Reynolds-Averaged Navier-Stokes) are more practical for the transient simulation of mixing processes at large spatial and temporal scales such as crude oil mixing in large-diameter storage tanks. To keep the efficiency of parallel computation of LBM, the RANS model should also be explicitly solved; whereas to keep the numerical stability the implicit method should be better for PANS model. This article explores the numerical stability of explicit methods in 2D cases on one hand, and on the other hand how to accelerate the computation of the coupled model of LBM and an implicitly solved RANS model in 3D cases. To ensure the numerical stability and meanwhile avoid the use of empirical artificial lim- itations on turbulent quantities in 2D cases, we investigated the impacts of collision models in LBM (LBGK, MRT) and the numerical schemes for convection terms (WENO, TVD) and production terms (FDM, NEQM) in an explic- itly solved standard k-e model. The combination of MRT and TVD or MRT and NEQM can be screened out for the 2D simulation of backward-facing step flow even at Re = 107. This scheme combination, however, may still not guarantee the numerical stability in 3D cases and hence much finer grids are required, which is not suitable for the simulation of industrial-scale processes.Then we proposed a new method to accelerate the coupled model of LBM with RANS (implicitly solved). When implemented on multiple GPUs, this new method can achieve 13.5-fold accelera- tion relative to the original coupled model and 40-fold acceleration compared to the traditional CFD simulation based on Finite Volume (FV) method accelerated by multiple CPUs. This study provides the basis for the transient flow simulation of larger spatial and temporal scales in industrial applications with LBM-RANS methods.
基金Supported by the High Technology Research and Development Programme of China.
文摘This paper introduces the method of developing a simulation package with expert systemfor a flexible manufacturing system(FMS)in Windows environment and presents some sim-ulation results for real examples.
文摘In this article,we introduce a nonlinear Caputo-type snakebite envenoming model with memory.The well-known Caputo fractional derivative is used to generalize the previously presented integer-order model into a fractionalorder sense.The numerical solution of the model is derived from a novel implementation of a finite-difference predictor-corrector(L1-PC)scheme with error estimation and stability analysis.The proof of the existence and positivity of the solution is given by using the fixed point theory.From the necessary simulations,we justify that the first-time implementation of the proposedmethod on an epidemicmodel shows that the scheme is fully suitable and time-efficient for solving epidemic models.This work aims to show the novel application of the given scheme as well as to check how the proposed snakebite envenoming model behaves in the presence of the Caputo fractional derivative,including memory effects.
基金supported by a Grant-in-Aid for Scientific Research on Innovation Areas "Molecular Robotics"(No.24104004) of the Ministry of Education,Culture,Sports,Science,and Technology,Japan
文摘A microtubule gliding assay is a biological experiment observing the dynamics of microtubules driven by motor proteins fixed on a glass surface. When appropriate microtubule interactions are set up on gliding assay experiments, microtubules often organize and create higher-level dynamics such as ring and bundle structures. In order to reproduce such higher-level dynamics on computers, we have been focusing on making a real-time 3D microtubule simulation. This real-time 3D microtubule simulation enables us to gain more knowledge on microtubule dynamics and their swarm movements by means of adjusting simulation paranleters in a real-time fashion. One of the technical challenges when creating a real-time 3D simulation is balancing the 3D rendering and the computing performance. Graphics processor unit (GPU) programming plays an essential role in balancing the millions of tasks, and makes this real-time 3D simulation possible. By the use of general-purpose computing on graphics processing units (GPGPU) programming we are able to run the simulation in a massively parallel fashion, even when dealing with more complex interactions between microtubules such as overriding and snuggling. Due to performance being an important factor, a performance n, odel has also been constructed from the analysis of the microtubule simulation and it is consistent with the performance measurements on different GPGPU architectures with regards to the number of cores and clock cycles.
文摘Collision-free path planning for an industrtal robot in configuration space requires mapping obstacles from robot's workspace into its configuration space. In this paper ,an approach to real-time collision-free path planning for robots in configuration space is presented. Obstacle mapping is carried out by fundamental obstacles defined in the workspace and their images in the configuration space. In order to avoid dealing with unimportant parts of the configuration space that do not thect searching a collision-free path between starting and goal configurations, we construct a free subspace by slice configuration obstacles. In this free subspace, the collision-free path is determined by the A algorithm. Finally, graphical simulations show the effectiveness of the proposed approach.