A graphic processing unit (GPU)-accelerated biological species recognition method using partially connected neural evolutionary network model is introduced in this paper. The partial connected neural evolutionary netw...A graphic processing unit (GPU)-accelerated biological species recognition method using partially connected neural evolutionary network model is introduced in this paper. The partial connected neural evolutionary network adopted in the paper can overcome the disadvantage of traditional neural network with small inputs. The whole image is considered as the input of the neural network, so the maximal features can be kept for recognition. To speed up the recognition process of the neural network, a fast implementation of the partially connected neural network was conducted on NVIDIA Tesla C1060 using the NVIDIA compute unified device architecture (CUDA) framework. Image sets of eight biological species were obtained to test the GPU implementation and counterpart serial CPU implementation, and experiment results showed GPU implementation works effectively on both recognition rate and speed, and gained 343 speedup over its counterpart CPU implementation. Comparing to feature-based recognition method on the same recognition task, the method also achieved an acceptable correct rate of 84.6% when testing on eight biological species.展开更多
In this paper, an online optimal distributed learning algorithm is proposed to solve leader-synchronization problem of nonlinear multi-agent differential graphical games. Each player approximates its optimal control p...In this paper, an online optimal distributed learning algorithm is proposed to solve leader-synchronization problem of nonlinear multi-agent differential graphical games. Each player approximates its optimal control policy using a single-network approximate dynamic programming(ADP) where only one critic neural network(NN) is employed instead of typical actorcritic structure composed of two NNs. The proposed distributed weight tuning laws for critic NNs guarantee stability in the sense of uniform ultimate boundedness(UUB) and convergence of control policies to the Nash equilibrium. In this paper, by introducing novel distributed local operators in weight tuning laws, there is no more requirement for initial stabilizing control policies. Furthermore, the overall closed-loop system stability is guaranteed by Lyapunov stability analysis. Finally, Simulation results show the effectiveness of the proposed algorithm.展开更多
基金National Natural Science Foundation of China (No. 60975084)Natural Science Foundation of Fujian Province,China (No.2011J05159)
文摘A graphic processing unit (GPU)-accelerated biological species recognition method using partially connected neural evolutionary network model is introduced in this paper. The partial connected neural evolutionary network adopted in the paper can overcome the disadvantage of traditional neural network with small inputs. The whole image is considered as the input of the neural network, so the maximal features can be kept for recognition. To speed up the recognition process of the neural network, a fast implementation of the partially connected neural network was conducted on NVIDIA Tesla C1060 using the NVIDIA compute unified device architecture (CUDA) framework. Image sets of eight biological species were obtained to test the GPU implementation and counterpart serial CPU implementation, and experiment results showed GPU implementation works effectively on both recognition rate and speed, and gained 343 speedup over its counterpart CPU implementation. Comparing to feature-based recognition method on the same recognition task, the method also achieved an acceptable correct rate of 84.6% when testing on eight biological species.
文摘In this paper, an online optimal distributed learning algorithm is proposed to solve leader-synchronization problem of nonlinear multi-agent differential graphical games. Each player approximates its optimal control policy using a single-network approximate dynamic programming(ADP) where only one critic neural network(NN) is employed instead of typical actorcritic structure composed of two NNs. The proposed distributed weight tuning laws for critic NNs guarantee stability in the sense of uniform ultimate boundedness(UUB) and convergence of control policies to the Nash equilibrium. In this paper, by introducing novel distributed local operators in weight tuning laws, there is no more requirement for initial stabilizing control policies. Furthermore, the overall closed-loop system stability is guaranteed by Lyapunov stability analysis. Finally, Simulation results show the effectiveness of the proposed algorithm.