This article presents a theory about the growth mechanism of bubble-screw dislocation of nodular graphite. Normally speaking, the crystallizing procedure of most nodular graphite is as follows: firstly, graphite gener...This article presents a theory about the growth mechanism of bubble-screw dislocation of nodular graphite. Normally speaking, the crystallizing procedure of most nodular graphite is as follows: firstly, graphite generates nuclei on bubbles and fills them (mainly in the way of screw dislocation) forming the complete nuclei of nodular graphite-graphite bubble nuclei. Then, graphite grows up in the way of screw dislocation. Two important conditions concerning the production of nodular graphite are: (a) there is a relatively big interfacial energy between ferro liquid and graphite, and the one between ferro liquid and graphite prismatic plane is bigger than that between ferro liquid and graphite basal plane; (b) there are a certain amount of micro-bubbles in the melt.展开更多
In this paper, the mathematical and physical model was developed based on thermodynamics and solidification theory before the eutectoid transformation of nodular graphite iron occurred. The Local Element Substitute an...In this paper, the mathematical and physical model was developed based on thermodynamics and solidification theory before the eutectoid transformation of nodular graphite iron occurred. The Local Element Substitute and Magnification Method was brought forward and 3-dimensional numerical simulation program based on the model and the new assistant algorithm was developed and used to calculate the samples. Results of calculation have good agreement with experimental data. To display the microstructure formation during solidification of nodular graphite iron, a 2-dimensional numerical simulation program combined with the result of the 3-dimensional numerical simulation of experimental samples was compiled.展开更多
文摘This article presents a theory about the growth mechanism of bubble-screw dislocation of nodular graphite. Normally speaking, the crystallizing procedure of most nodular graphite is as follows: firstly, graphite generates nuclei on bubbles and fills them (mainly in the way of screw dislocation) forming the complete nuclei of nodular graphite-graphite bubble nuclei. Then, graphite grows up in the way of screw dislocation. Two important conditions concerning the production of nodular graphite are: (a) there is a relatively big interfacial energy between ferro liquid and graphite, and the one between ferro liquid and graphite prismatic plane is bigger than that between ferro liquid and graphite basal plane; (b) there are a certain amount of micro-bubbles in the melt.
文摘In this paper, the mathematical and physical model was developed based on thermodynamics and solidification theory before the eutectoid transformation of nodular graphite iron occurred. The Local Element Substitute and Magnification Method was brought forward and 3-dimensional numerical simulation program based on the model and the new assistant algorithm was developed and used to calculate the samples. Results of calculation have good agreement with experimental data. To display the microstructure formation during solidification of nodular graphite iron, a 2-dimensional numerical simulation program combined with the result of the 3-dimensional numerical simulation of experimental samples was compiled.