期刊文献+
共找到184,893篇文章
< 1 2 250 >
每页显示 20 50 100
SiO_(2)@GO杂化膜的制备及其渗透汽化脱盐性能研究
1
作者 展侠 杨雨均 +1 位作者 聂明雪 高仲勇 《化工新型材料》 CAS CSCD 北大核心 2024年第7期93-97,103,共6页
以渗透汽化膜法脱盐为研究背景,针对目前氧化石墨烯膜(GOM)易溶胀、稳定性差和渗透通量衰减等缺点,采用疏水、亲水、原位合成方法制备了3种纳米二氧化硅(SiO_(2))对GOM进行插层修饰,进而制备SiO_(2)@氧化石墨烯(SiO_(2)@GO)膜。通过傅... 以渗透汽化膜法脱盐为研究背景,针对目前氧化石墨烯膜(GOM)易溶胀、稳定性差和渗透通量衰减等缺点,采用疏水、亲水、原位合成方法制备了3种纳米二氧化硅(SiO_(2))对GOM进行插层修饰,进而制备SiO_(2)@氧化石墨烯(SiO_(2)@GO)膜。通过傅里叶红外变换光谱仪(FT-IR)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)、接触角测量仪等方法表征其化学组分、形貌、晶体结构和亲水性。渗透汽化脱盐实验表明,疏水性SiO_(2)@GO杂化膜脱盐性能优于亲水性SiO_(2)@GO和原位制备SiO_(2)@GO膜,且当SiO_(2)与GO质量比为0.2时,疏水性SiO_(2)@GO杂化膜水通量可达103.4kg/(m^(2)·h),盐截留率为99.8%(70℃,3.5%NaCl溶液),在连续12h测试中分离性能保持稳定,表明疏水性SiO_(2)@GO杂化膜在渗透汽化脱盐领域有着广阔的应用前景。 展开更多
关键词 二氧化硅 氧化石墨烯 杂化膜 渗透汽化 脱盐
下载PDF
静电组装低感度CL-20@GO核壳复合材料的制备及性能研究 被引量:1
2
作者 黄业明 汪鑫 +1 位作者 张竞轩 王敦举 《火炸药学报》 EI CAS CSCD 北大核心 2024年第1期44-50,共7页
为降低六硝基六氮杂异伍兹烷(CL-20)的机械感度,提高其综合性能,以3-氨丙基三乙氧基硅烷(APS)为改性剂对CL-20改性,以氧化石墨烯(GO)为包覆材料,利用静电自组装方法对改性CL-20炸药进行表面包覆,制备得到CL-20@GO核壳复合材料;采用水接... 为降低六硝基六氮杂异伍兹烷(CL-20)的机械感度,提高其综合性能,以3-氨丙基三乙氧基硅烷(APS)为改性剂对CL-20改性,以氧化石墨烯(GO)为包覆材料,利用静电自组装方法对改性CL-20炸药进行表面包覆,制备得到CL-20@GO核壳复合材料;采用水接触角测试、扫描电子显微镜(SEM)和X射线光电子能谱(XPS)等对样品进行形貌表征;利用差示扫描量热仪(DSC)测试其热性能,并测试了其机械感度。结果表明,经质量分数5%的APS溶液改性的CL-20成功引入氨基基团,亲水性效果最佳;GO层包覆改性CL-20完整,致密性强;与原料CL-20相比,CL-20@GO核壳复合材料的活化能提高了63.0kJ/mol,撞击感度(H 50)由13.0cm提升至23.5cm,摩擦感度由100%降至24%,表明采用静电自组装的GO涂层可以明显降低CL-20的感度。 展开更多
关键词 材料科学 CL-20@go 表面改性 静电自组装 氧化石墨烯 go 复合炸药
下载PDF
“蛋壳-膜”结构的NiCo_(2)S_(4)/rGO复合材料制备与电化学性能的研究
3
作者 黄立志 陈娜丽 +3 位作者 谈本刚 黄晓雪 孙戈婷 冯辉霞 《应用化工》 CAS CSCD 北大核心 2024年第2期346-350,共5页
以氧化石墨烯(GO)为原料,MOFs材料ZIF-67为牺牲模板,制备了NiCo_(2)S_(4)/还原氧化石墨烯(rGO)复合材料,采用SEM、TEM、XRD、XPS和Raman测试技术对其结构进行了表征,研究了其电化学性能。结果表明,所制NiCo_(2)S_(4)/rGO复合材料具有“... 以氧化石墨烯(GO)为原料,MOFs材料ZIF-67为牺牲模板,制备了NiCo_(2)S_(4)/还原氧化石墨烯(rGO)复合材料,采用SEM、TEM、XRD、XPS和Raman测试技术对其结构进行了表征,研究了其电化学性能。结果表明,所制NiCo_(2)S_(4)/rGO复合材料具有“蛋壳-膜”结构,在1 A/g的电流密度下,比电容为1 350 F/g,电流密度增至20 A/g时比电容的保持率为46.93%,是纯NiCo_(2)S_(4)的1.28倍;3 000次循环后比电容保持率为99.4%,高于纯NiCo_(2)S_(4)活化后的。 展开更多
关键词 NiCo_(2)S_(4) 还原氧化石墨烯 复合材料 超级电容器
下载PDF
Layered Potassium Titanium Niobate/Reduced Graphene Oxide Nanocomposite as a Potassium‑Ion Battery Anode 被引量:2
4
作者 Charlie A.F.Nason Ajay Piriya Vijaya Kumar Saroja +3 位作者 Yi Lu Runzhe Wei Yupei Han Yang Xu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期1-16,共16页
With graphite currently leading as the most viable anode for potassium-ion batteries(KIBs),other materials have been left relatively underexamined.Transition metal oxides are among these,with many positive attributes ... With graphite currently leading as the most viable anode for potassium-ion batteries(KIBs),other materials have been left relatively underexamined.Transition metal oxides are among these,with many positive attributes such as synthetic maturity,longterm cycling stability and fast redox kinetics.Therefore,to address this research deficiency we report herein a layered potassium titanium niobate KTiNbO5(KTNO)and its rGO nanocomposite(KTNO/rGO)synthesised via solvothermal methods as a high-performance anode for KIBs.Through effective distribution across the electrically conductive rGO,the electrochemical performance of the KTNO nanoparticles was enhanced.The potassium storage performance of the KTNO/rGO was demonstrated by its first charge capacity of 128.1 mAh g^(−1) and reversible capacity of 97.5 mAh g^(−1) after 500 cycles at 20 mA g^(−1),retaining 76.1%of the initial capacity,with an exceptional rate performance of 54.2 mAh g^(−1)at 1 A g^(−1).Furthermore,to investigate the attributes of KTNO in-situ XRD was performed,indicating a low-strain material.Ex-situ X-ray photoelectron spectra further investigated the mechanism of charge storage,with the titanium showing greater redox reversibility than the niobium.This work suggests this lowstrain nature is a highly advantageous property and well worth regarding KTNO as a promising anode for future high-performance KIBs. 展开更多
关键词 Potassium-ion batteries INTERCALATION Transition metal oxides Anodes NANOCOMPOSITE
下载PDF
Phase-engineering modulation of Mn-based oxide cathode for constructing super-stable sodium storage 被引量:1
5
作者 Quanqing Zhao Ruru Wang +5 位作者 Ming Gao Bolin Liu Jianfeng Jia Haishun Wu Youqi Zhu Chuanbao Cao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期421-427,I0010,共8页
The Mn-based oxide cathode with enriched crystal phase structure and component diversity can provide the excellent chemistry structure for Na-ion batteries.Nevertheless,the broad application prospect is obstructed by ... The Mn-based oxide cathode with enriched crystal phase structure and component diversity can provide the excellent chemistry structure for Na-ion batteries.Nevertheless,the broad application prospect is obstructed by the sluggish Na^(+)kinetics and the phase transitions upon cycling.Herein,we establish the thermodynamically stable phase diagram of various Mn-based oxide composites precisely controlled by sodium content tailoring strategy coupling with co-doping and solid-state reaction.The chemical environment of the P2/P'3 and P2/P3 biphasic composites indicate that the charge compensation mechanism stems from the cooperative contribution of anions and cations.Benefiting from the no phase transition to scavenge the structure strain,P2/P'3 electrode can deliver long cycling stability(capacity retention of 73.8%after 1000 cycles at 10 C)and outstanding rate properties(the discharge capacity of 84.08 mA h g^(-1)at 20 C)than P2/P3 electrode.Furthermore,the DFT calculation demonstrates that the introducing novel P'3 phase can significantly regulate the Na^(+)reaction dynamics and modify the local electron configuration of Mn.The effective phase engineering can provide a reference for designing other high-performance electrode materials for Na-ion batteries. 展开更多
关键词 Sodium ion battery oxide cathode Phase engineering Phase diagram Na~+kinetic
下载PDF
Analysis of CO_3O_4/ Mildly Oxidized Graphite Oxide(mGO)Nanocomposites of Mild Oxidation Degree for the Removal of Acid Orange 7
6
作者 王倩 时鹏辉 +3 位作者 朱少波 李洁冰 ASIF Hussain 李登新 《Journal of Donghua University(English Edition)》 EI CAS 2015年第2期185-191,共7页
In this study,a series of Co_3O_4/ mildly oxidized graphite oxide(mGO) nanocatalysts(Co_3O_4/ mGO-l,Co_3O_4/ mGO-2 and Co_3O_4/mGO-3) were synthesized through solvothermal method and used as a mediator for the heterog... In this study,a series of Co_3O_4/ mildly oxidized graphite oxide(mGO) nanocatalysts(Co_3O_4/ mGO-l,Co_3O_4/ mGO-2 and Co_3O_4/mGO-3) were synthesized through solvothermal method and used as a mediator for the heterogeneous peroxymonosulfate(PMS)activation.The performance of CO_3O_4 / mGO/PMS system was investigated using acid orange 7(AO7).Results showed that Co_3O_4/mGO-3 had the best degradation efficiency of AO7 and the removal rate was above 90%in about 6 min.The phenomenon indicated the catalytic activity of Co_3O_4/mGO composites was related to the oxidation degree of graphite oxide(GO).In addition,experiments showed the content of Co_3O_4 had an effect on the catalytic activity.The composites were characterized with X-ray powder diffraction(XRD),FTIR,Raman,X-ray photoelectron spectroscopy(XPS) and transmission electron microscopy(TEM).According to the charactrization and synergistic catalytic mechanism,the generation of Co—OH complexes found to be the initial step to activate PMS in the heterogeneous system of Co_3O_4/mGO hybrid. 展开更多
关键词 heterogeneous reaction synergistic catalysis mildly oxidized graphite oxide(mgo) Co-OH complexes
下载PDF
PEO/rGO复合电热膜的制备及电热性能研究
7
作者 张丽辉 郭锐 +3 位作者 刘亚宁 王冰佳 童博 夏阳 《化工新型材料》 CAS CSCD 北大核心 2024年第6期83-88,93,共7页
采用导电性能优异的还原氧化石墨烯(rGO)为导电填料,以高分子聚合物聚氧化乙烯(PEO)为粘结剂,以N-甲基-2-吡咯烷酮(NMP)为溶剂配制成导电浆料,通过刮涂法高温固化得到聚氧化乙烯/还原氧化石墨烯(PEO/rGO)复合电热膜。通过X射线衍射仪、... 采用导电性能优异的还原氧化石墨烯(rGO)为导电填料,以高分子聚合物聚氧化乙烯(PEO)为粘结剂,以N-甲基-2-吡咯烷酮(NMP)为溶剂配制成导电浆料,通过刮涂法高温固化得到聚氧化乙烯/还原氧化石墨烯(PEO/rGO)复合电热膜。通过X射线衍射仪、扫描电子显微镜、傅里叶变换红外光谱仪对复合电热膜进行分析表征,并测试了其电学特性和电加热性能。结果表明:PEO/rGO复合电热膜的方阻随着rGO含量的增加而逐渐下降,且方阻的下降速度由快到慢;PEO/rGO复合电热膜的升温速度随着导电填料rGO含量的增加逐渐变缓;当rGO含量较多、PEO含量较少时,会造成升温速率下降,也会造成电热平台不稳定;当rGO质量分数为20%时,在施加18V直流电压下复合电热膜可快速升温至43℃,并且表现出平稳的电热平台和较高的电加热效率,能够满足低温高效率复合电热膜的使用要求。 展开更多
关键词 聚氧化乙烯 还原氧化石墨烯 电热膜 复合材料
下载PDF
Upcycling the spent graphite/LiCoO_(2) batteries for high-voltage graphite/LiCoPO_(4)-co-workable dual-ion batteries
8
作者 Miao Du Hongyan Lü +5 位作者 Kaidi Du Shuohang Zheng Xiaotong Wang Xiaotong Deng Ronghua Zeng Xinglong Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1745-1751,共7页
The worldwide proliferation of portable electronics has resulted in a dramatic increase in the number of spent lithium-ion batteries(LIBs).However,traditional recycling methods still have limitations because of such h... The worldwide proliferation of portable electronics has resulted in a dramatic increase in the number of spent lithium-ion batteries(LIBs).However,traditional recycling methods still have limitations because of such huge amounts of spent LIBs.Therefore,we proposed an ecofriendly and sustainable double recycling strategy to concurrently reuse the cathode(LiCoO_(2))and anode(graphite)materials of spent LIBs and recycled LiCoPO_(4)/graphite(RLCPG)in Li^(+)/PF^(-)_(6) co-de/intercalation dual-ion batteries.The recycle-derived dualion batteries of Li/RLCPG show impressive electrochemical performance,with an appropriate discharge capacity of 86.2 mAh·g^(-1) at25 mA·g^(-1) and 69%capacity retention after 400 cycles.Dual recycling of the cathode and anode from spent LIBs avoids wastage of resources and yields cathode materials with excellent performance,thereby offering an ecofriendly and sustainable way to design novel secondary batteries. 展开更多
关键词 RECYCLE lithium cobalt oxide lithium cobalt phosphate graphite dual-ion batteries spent lithium-ion batteries
下载PDF
Green synthesis of three-dimensional magnesium ferrite/titanium dioxide/reduced graphene from Garcinia mangostana extract for crystal violet photodegradation and antibacterial activity
9
作者 Tong Hoang Lin Che Quang Cong +10 位作者 Nguyen Thanh Hoai Nam Hoang An Nguyen Duy Hai Ton That Buu Thoi Le Nhat Binh Hoang Le Minh Lam Thanh Ngan Hoang Thuy Kim Ngan Du Chi Vi Ta Dang Khoa Nguyen Huu Hieu 《Journal of Semiconductors》 EI CAS CSCD 2023年第12期111-124,共14页
In this study,three-dimensional porous magnesium ferrite/titanium dioxide/reduced graphene oxide(Mg Fe_2O_(4)-GM/TiO_(2)/rGO(MGTG))was successfully synthesized via green and hydrothermal-supported co-precipitation met... In this study,three-dimensional porous magnesium ferrite/titanium dioxide/reduced graphene oxide(Mg Fe_2O_(4)-GM/TiO_(2)/rGO(MGTG))was successfully synthesized via green and hydrothermal-supported co-precipitation methods using the extract of Garcinia mangostana(G.mangostana)as a reducing agent.The characterization results indicate the successful formation of the nano/micro Mg Fe_(2)O_(4)(MFO)and TiO_(2) on the structure of the reduced graphene oxide(rGO),which can also act as efficient support,alleviating the agglomeration of the nano/micro MFO and TiO_(2).The synergic effects of the adsorption and photodegradation activity of the material were investigated according to the removal of crystal violet(CV)under ultraviolet light.The effects of catalyst dosage,CV concentration,and p H on the CV removal efficiency of the MGTG were also investigated.According to the results,the CV photodegradation of the MGTG-200 corresponded to the pseudo-first-order kinetic model.The reusability of the material after 10 cycles also showed a removal efficiency of 92%.This happened because the materials can easily be recollected using external magnets.In addition,according to the effects of different free radicals·O_(2)^(-),h^(+),and·OH on the photodegradation process,the photocatalysis mechanism of the MGTG was also thoroughly suggested.The antibacterial efficiency of the MGTG was also evaluated according to the inhibition of the Gram-positive bacteria strain Staphylococcus aureus(S.aureus).Concurrently,the antibacterial mechanism of the fabricated material was also proposed.These results confirm that the prepared material can be potentially employed in a wide range of applications,including wastewater treatment and antibacterial activity. 展开更多
关键词 magnesium ferrite titanium dioxide reduced graphene oxide Garcinia mangostana PHOTODEGRADATION ANTIBACTERIAL
下载PDF
Gold/Mg-Al mixed oxides catalysts for oxidative esterification of methacrolein:Effects of support size and composition on gold loading
10
作者 Wangtao Li Qiancheng Zheng +2 位作者 Huayu Zhang Yunsheng Dai Zhengbao Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第12期128-138,共11页
Gold catalysts supported on Mg-Al mixed oxides for oxidative esterification of methacrolein are prepared by impregnation.Effects of the support particle size,concentration of HAuCl4 solution and Mg/Al ratio on gold lo... Gold catalysts supported on Mg-Al mixed oxides for oxidative esterification of methacrolein are prepared by impregnation.Effects of the support particle size,concentration of HAuCl4 solution and Mg/Al ratio on gold loading and catalytic properties are investigated.The catalysts are characterized by CO_(2)-TPD,EDS,XPS,STEM and XRD techniques.Catalysts with smaller support particle size show more uniform gold distribution and higher gold dispersion,resulting in a higher catalytic performance,and the uniformity of gold and the activity of the catalysts with larger support particle size can be improved by decreasing the concentration of HAuCl4 solution.The Mg/Al molar ratio has significant effect on the uniformity of gold and the activity of the catalyst,and the optimum Mg/Al molar ratio is 0.1–0.2.This study underlines the importance of engineering support particle size,concentration of HAuCl4 solution and density of adsorption sites for efficient gold loading on support by impregnation. 展开更多
关键词 gold catalysts Oxidative esterification Support particle size effect Mass transfer DISTRIBUTIONS Optimization
下载PDF
Boosting oxygen reduction activity and CO_(2) resistance on bismuth ferrite-based perovskite cathode for low-temperature solid oxide fuel cells below 600℃ 被引量:1
11
作者 Juntao Gao Zhiyun Wei +5 位作者 Mengke Yuan Zhe Wang Zhe Lü Qiang Li Lingling Xu Bo Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期600-609,I0013,共11页
Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)... Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs. 展开更多
关键词 Low-temperature solid oxide fuel cell Perovskite cathode DFT calculations CO_(2) tolerance
下载PDF
基于rGO-AuNPS修饰丝网印刷电极的电化学生物传感器快速检测甲基对硫磷 被引量:2
12
作者 耿俊豪 李雪芝 +1 位作者 周建平 陈昌华 《食品与机械》 CSCD 北大核心 2024年第1期47-54,共8页
目的:实现对甲基对硫磷的快速检测。方法:基于金纳米颗粒和还原氧化石墨烯制备了用于对甲基对硫磷进行定量检测的乙酰胆碱酯酶传感器。采用层层组装方法,将还原氧化石墨烯、金纳米颗粒、乙酰胆碱酯酶依次修饰在丝网印刷电极表面。对传... 目的:实现对甲基对硫磷的快速检测。方法:基于金纳米颗粒和还原氧化石墨烯制备了用于对甲基对硫磷进行定量检测的乙酰胆碱酯酶传感器。采用层层组装方法,将还原氧化石墨烯、金纳米颗粒、乙酰胆碱酯酶依次修饰在丝网印刷电极表面。对传感器的催化活性、阻抗特性、传感器的抑制率与甲基对硫磷浓度的关系、实际样品检测进行了评估。结果:制备的乙酰胆碱酯酶生物传感器对乙酰硫代胆碱氯化物表现出优异的亲和力,米氏常数为2.76 mmol/L。在最佳条件下,可以有效检测甲基对硫磷,线性范围为5~500 ng/mL,检出限为0.692 ng/mL。结论:该方法操作简单、成本低、稳定性好,适用于有机磷类农药的快速检测。 展开更多
关键词 生物传感器 丝网印刷电极 甲基对硫磷 还原氧化石墨烯 纳米金
下载PDF
Targeted regeneration and upcycling of spent graphite by defect‐driven tin nucleation
13
作者 Zhiheng Cheng Zhiling Luo +7 位作者 Hao Zhang Wuxing Zhang Wang Gao Yang Zhang Long Qie Yonggang Yao Yunhui Huang Kun Kelvin Fu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期91-103,共13页
The recycling of spent batteries has become increasingly important owing to their wide applications,abundant raw material supply,and sustainable development.Compared with the degraded cathode,spent anode graphite ofte... The recycling of spent batteries has become increasingly important owing to their wide applications,abundant raw material supply,and sustainable development.Compared with the degraded cathode,spent anode graphite often has a relatively intact structure with few defects after long cycling.Yet,most spent graphite is simply burned or discarded due to its limited value and inferior performance on using conventional recycling methods that are complex,have low efficiency,and fail in performance restoration.Herein,we propose a fast,efficient,and“intelligent”strategy to regenerate and upcycle spent graphite based on defect‐driven targeted remediation.Using Sn as a nanoscale healant,we used rapid heating(~50 ms)to enable dynamic Sn droplets to automatically nucleate around the surface defects on the graphite upon cooling owing to strong binding to the defects(~5.84 eV/atom),thus simultaneously achieving Sn dispersion and graphite remediation.As a result,the regenerated graphite showed enhanced capacity and cycle stability(458.9 mAh g^(−1) at 0.2 A g^(−1) after 100 cycles),superior to those of commercial graphite.Benefiting from the self‐adaption of Sn dispersion,spent graphite with different degrees of defects can be regenerated to similar structures and performance.EverBatt analysis indicates that targeted regeneration and upcycling have significantly lower energy consumption(~99%reduction)and near‐zero CO_(2) emission,and yield much higher profit than hydrometallurgy,which opens a new avenue for direct upcycling of spend graphite in an efficient,green,and profitable manner for sustainable battery manufacture. 展开更多
关键词 battery recycling spent graphite targeted regeneration upcycling graphite
下载PDF
Recycled graphite for more sustainable lithium-ion batteries
14
作者 Mayokun Olutogun Anna Vanderbruggen +5 位作者 Christoph Frey Martin Rudolph Dominic Bresser Stefano Passerini Helmholtz Institute Ulm(HIU) Ulm 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期15-24,共10页
The demand for lithium-ion batteries(LIBs)is driven largely by their use in electric vehicles,which is projected to increase dramatically in the future.This great success,however,urgently calls for the efficient recyc... The demand for lithium-ion batteries(LIBs)is driven largely by their use in electric vehicles,which is projected to increase dramatically in the future.This great success,however,urgently calls for the efficient recycling of LIBs at the end of their life.Herein,we describe a froth flotation-based process to recycle graphite—the predominant active material for the negative electrode—from spent LIBs and investigate its reuse in newly assembled LIBs.It has been found that the structure and morphology of the recycled graphite are essentially unchanged compared to pristine commercial anode-grade graphite,and despite some minor impurities from the recycling process,the recycled graphite provides a remarkable reversible specific capacity of more than 350 mAh g^(−1).Even more importantly,newly assembled graphite‖NMC532 cells show excellent cycling stability with a capacity retention of 80%after 1000 cycles,that is,comparable to the performance of reference full cells comprising pristine commercial graphite. 展开更多
关键词 ANODE graphite lithium-ion battery RECYCLING SUSTAINABILITY
下载PDF
磷酸在GO插层阶段的功能化调控及机理
15
作者 王佳瑞 李春丽 +3 位作者 程佳豪 郝亚玲 周楠 杨鹏 《高等学校化学学报》 SCIE EI CSCD 北大核心 2024年第1期61-71,共11页
针对氧化石墨烯(GO)制备过程中插层阶段的调控及机理研究对GO功能化应用于电极材料具有重要的研究意义.本文在改进Hummers法的基础上,向H_(2)SO_(4)插层剂中加入不同体积的H_(3)PO_(4),制备了不同氧化程度的GO.利用扫描电子显微镜(SEM)... 针对氧化石墨烯(GO)制备过程中插层阶段的调控及机理研究对GO功能化应用于电极材料具有重要的研究意义.本文在改进Hummers法的基础上,向H_(2)SO_(4)插层剂中加入不同体积的H_(3)PO_(4),制备了不同氧化程度的GO.利用扫描电子显微镜(SEM)、X射线光电子能谱(XPS)和傅里叶变换红外光谱(FTIR)等表征手段,分析了不同氧化程度的GO的微观形貌、元素组成、氧化程度,以探究H_(3)PO_(4)在插层石墨过程中的作用机理;并采用循环伏安法(CV)和交流阻抗法(EIS)对不同H_(2)SO_(4)/H_(3)PO_(4)体积比下的GO进行电化学性能测试,分析了H_(3)PO_(4)对GO电化学性能的影响,以达到调控石墨的插层氧化从而提升GO导电性的目的.结果表明,单一的H_(2)SO_(4)使GO基面上的邻位二醇过度氧化造成孔洞,H_(3)PO_(4)的加入会扩大石墨层间距,使氧化剂更易进入石墨层间,并与1,2-二醇反应生成环状结构以起到保护基面的作用,从而提高GO的导电性.H_(3)PO_(4)作为辅助酸会协助H_(2)SO_(4)制备基面更加完整且氧化程度更高的GO,但其酸性较弱,不可完全代替H_(2)SO_(4)在氧化过程中的作用. 展开更多
关键词 氧化石墨烯 磷酸插层 机理研究 电化学 化学反应 部分氧化
下载PDF
Electrochemical response of MgO/Co_(3)O_(4) oxide layers produced by plasma electrolytic oxidation and post treatment using cobalt nitrate
16
作者 Mosab Kaseem Tehseen Zehra +2 位作者 Tassawar Hussain Young Gun Ko Arash Fattah-alhosseini 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第3期1057-1073,共17页
This work looked into the influence of the sealing treatment on the structural feature and electrochemical response of AZ31 Mg alloy coated via plasma electrolytic oxidation(PEO).Here,the inorganic layers produced by ... This work looked into the influence of the sealing treatment on the structural feature and electrochemical response of AZ31 Mg alloy coated via plasma electrolytic oxidation(PEO).Here,the inorganic layers produced by PEO in an alkaline-phosphate electrolyte were subsequently immersed for different periods in cold(60°C)and hot(100°C)aqueous solutions containing either 1 or 3 gr of cobalt nitrate hexahydrate in the presence of hydrogen peroxide as an initiator.The results showed that the sealing treatments in the hot solutions could trigger the hydration reactions of PEO coating which would largely assist the surface incorporation of Co_(3)O_(4)into the coating.In contrast,the sealing in cold solutions led to less compact coatings,which was attributed to the fact the hydration reactions would be restricted at 60°C.A nearly fully sealed coating with a porosity of~0.5%was successfully formed on the sample immersed in the hot solution containing 1 gr of cobalt nitrate hexahydrate.Thus,the electrochemical stability of this fully sealed coating was superior to the other samples as it had the lowest corrosion current density(4.71×10^(-10)A·cm^(-2))and the highest outer layer resistance(3.81×10^(7)Ω·cm^(2)).The composite coatings developed in this study are ideal for applications requiring high electrochemical stability. 展开更多
关键词 AZ31 Mg alloy Plasma electrolytic oxidation Co_(3)O_(4) HYDRATION Corrosion
下载PDF
Aggregation-regulated bioreduction process of graphene oxide by Shewanella bacteria
17
作者 Kaixin Han Yibo Zeng +2 位作者 Yinghua Lu Ping Zeng Liang Shen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期56-62,共7页
The bioreduction of graphene oxide(GO)using environmentally functional bacteria such as Shewanella represents a green approach to produce reduced graphene oxide(rGO).This process differs from the chemical reduction th... The bioreduction of graphene oxide(GO)using environmentally functional bacteria such as Shewanella represents a green approach to produce reduced graphene oxide(rGO).This process differs from the chemical reduction that involves instantaneous molecular reactions.In bioreduction,the contact of bacterial cells and GO is considered the rate-limiting step.To reveal how the bacteria-GO integration regulates rGO production,the comparative experiments of GO and three Shewanella strains were carried out.Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy,Raman spectroscopy,and atomic force microscopy were used to characterize the reduction degree and the aggregation degree.The results showed that a spontaneous aggregation of GO and Shewanella into the condensed entity occurred within 36 h.A positive linear correlation was established,linking three indexes of the aggregation potential,the bacterial reduction ability,and the reduction degree(ID/IG)comprehensively. 展开更多
关键词 Graphene oxide Reduced graphene oxide BIOREDUCTION AGGREGATION SHEWANELLA
下载PDF
Growth kinetics of titanium carbide coating by molten salt synthesis process on graphite sheet surface
18
作者 Xiaoyu Shi Chongxiao Guo +4 位作者 Jiamiao Ni Songsong Yao Liqiang Wang Yue Liu Tongxiang Fan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第8期1858-1864,共7页
The synthesis of carbide coatings on graphite substrates using molten salt synthesis(MSS),has garnered significant interest due to its cost-effective nature.This study investigates the reaction process and growth kine... The synthesis of carbide coatings on graphite substrates using molten salt synthesis(MSS),has garnered significant interest due to its cost-effective nature.This study investigates the reaction process and growth kinetics involved in MSS,shedding light on key aspects of the process.The involvement of Ti powder through liquid-phase mass transfer is revealed,where the diffusion distance and quantity of Ti powder play a crucial role in determining the reaction rate by influencing the C content gradient on both sides of the carbide.Furthermore,the growth kinetics of the carbide coating are predominantly governed by the diffusion behavior of C within the carbide layer,rather than the chemical reaction rate.To analyze the kinetics,the thickness of the carbide layer is measured with respect to heat treatment time and temperature,unveiling a parabolic relationship within the temperature range of 700-1300℃.The estimated activation energy for the reaction is determined to be 179283 J·mol^(-1).These findings offer valuable insights into the synthesis of carbide coatings via MSS,facilitating their optimization and enhancing our understanding of their growth mechanisms and properties for various applications. 展开更多
关键词 titanium carbide graphite molten salt kinetic analysis
下载PDF
微弧氧化后Mg-8Li合金表面MgLiAlY-LDHs@GO膜层的生长及耐蚀性能
19
作者 周岩 吴量 +8 位作者 汪安 汪瑞俊 姚文辉 袁媛 谢治辉 张欣怡 吴嘉豪 陈勇花 潘复生 《表面技术》 EI CAS CSCD 北大核心 2024年第9期22-33,74,共13页
目的提高Mg-8Li合金的耐蚀性能。方法首先在Mg-8Li合金表面制备微弧氧化膜(MAO),然后使用原位水热法在微弧氧化膜表面原位生长掺杂氧化石墨烯(GO)的四元(MgLiAlY)层状双羟基金属氧化物(LDHs)智能自修复膜层。采用SEM、XRD、FT-IR、EDS、... 目的提高Mg-8Li合金的耐蚀性能。方法首先在Mg-8Li合金表面制备微弧氧化膜(MAO),然后使用原位水热法在微弧氧化膜表面原位生长掺杂氧化石墨烯(GO)的四元(MgLiAlY)层状双羟基金属氧化物(LDHs)智能自修复膜层。采用SEM、XRD、FT-IR、EDS、ICP等手段研究MgLiAlY-LDHs@GO膜层的形貌、结构以及成分。通过EIS、Tafel以及浸泡试验等研究膜层的耐蚀性能,分析膜层的腐蚀行为,阐释其耐蚀机理。结果GO的掺杂可以促使LDHs纳米片生长得更加致密,主体层板中具有缓蚀作用的Y3+可以提高涂层的耐蚀性,四元LDHs的生长所需要的Mg^(2+)、Li^(+)、Al^(3+)等离子来源于镁锂合金基体以及微弧氧化膜的溶解,其中Li+也可以促进LDHs纳米片生长得更为均匀细密。膜层的腐蚀电流密度为6.03×10^(–7)A/cm^(2),比MAO膜层降低了1个数量级,提高了镁锂合金的耐蚀性能。结论GO的负载使LDHs的耐蚀性能和膜层稳定性均有一定程度的提升,引入稀土元素Y会改变LDHs的骨架,造成晶格畸变,使得LDHs微观形貌呈现褶皱状,剩下部分以Y(OH)3形式存在于涂层表面,可进一步提高膜层的耐蚀性能和稳定性。 展开更多
关键词 镁锂合金 微弧氧化 层状双羟基金属氧化物 氧化石墨烯 耐蚀性能 自修复膜层
下载PDF
Spent graphite regeneration:Exploring diverse repairing manners with impurities-catalyzing effect towards high performance and low energy consumption
20
作者 Yu Dong Zihao Zeng +7 位作者 Zhengqiao Yuan Bing Wang Hai Lei Wenqing Zhao Wuyun Ai Lingchao Kong Yue Yang Peng Ge 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期656-669,共14页
Spent battery recycling has received considerable attention because of its economic and environmental potential.A large amount of retired graphite has been produced as the main electrode material,accompanied by a deta... Spent battery recycling has received considerable attention because of its economic and environmental potential.A large amount of retired graphite has been produced as the main electrode material,accompanied by a detailed exploration of the repair mechanism.However,they still suffer from unclear repair mechanisms and physicochemical evolution.In this study,spent graphite was repaired employing three methodologies:pickling-sintering,pyrogenic-recovery,and high-temperature sintering.Owing to the catalytic effect of the metal-based impurities and temperature control,the as-obtained samples displayed an ordered transformation,including the interlayer distance,crystalline degree,and grain size.As anodes of lithium ions batteries,the capacity of repaired samples reached up to 310 mA h g^(-1)above after 300loops at 1.0 C,similar to that of commercial graphite.Meanwhile,benefitting from the effective assembly of carbon atoms in internal structure of graphite at>1400℃,their initial coulombic efficiency were>87%.Even at 2.0 C,the capacity of samples remained approximately 244 mA h g^(-1)after 500 cycles.Detailed electrochemical and kinetic analyses revealed that a low temperature enhanced the isotropy,thereby enhancing the rate properties.Further,economic and environmental analyses revealed that the revenue obtained through suitable pyrogenic-recovering manners was approximately the largest value(5500$t^(-1)).Thus,this study is expected to clarify the in-depth effect of different repair methods on the traits of graphite,while offering all-round evaluations of repaired graphite. 展开更多
关键词 Spent graphite regeneration REPAIR Temperature treatment
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部