期刊文献+
共找到185,058篇文章
< 1 2 250 >
每页显示 20 50 100
Layered Potassium Titanium Niobate/Reduced Graphene Oxide Nanocomposite as a Potassium‑Ion Battery Anode 被引量:2
1
作者 Charlie A.F.Nason Ajay Piriya Vijaya Kumar Saroja +3 位作者 Yi Lu Runzhe Wei Yupei Han Yang Xu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期1-16,共16页
With graphite currently leading as the most viable anode for potassium-ion batteries(KIBs),other materials have been left relatively underexamined.Transition metal oxides are among these,with many positive attributes ... With graphite currently leading as the most viable anode for potassium-ion batteries(KIBs),other materials have been left relatively underexamined.Transition metal oxides are among these,with many positive attributes such as synthetic maturity,longterm cycling stability and fast redox kinetics.Therefore,to address this research deficiency we report herein a layered potassium titanium niobate KTiNbO5(KTNO)and its rGO nanocomposite(KTNO/rGO)synthesised via solvothermal methods as a high-performance anode for KIBs.Through effective distribution across the electrically conductive rGO,the electrochemical performance of the KTNO nanoparticles was enhanced.The potassium storage performance of the KTNO/rGO was demonstrated by its first charge capacity of 128.1 mAh g^(−1) and reversible capacity of 97.5 mAh g^(−1) after 500 cycles at 20 mA g^(−1),retaining 76.1%of the initial capacity,with an exceptional rate performance of 54.2 mAh g^(−1)at 1 A g^(−1).Furthermore,to investigate the attributes of KTNO in-situ XRD was performed,indicating a low-strain material.Ex-situ X-ray photoelectron spectra further investigated the mechanism of charge storage,with the titanium showing greater redox reversibility than the niobium.This work suggests this lowstrain nature is a highly advantageous property and well worth regarding KTNO as a promising anode for future high-performance KIBs. 展开更多
关键词 Potassium-ion batteries INTERCALATION Transition metal oxides Anodes NANOCOMPOSITE
下载PDF
Advancements,strategies,and prospects of solid oxide electrolysis cells(SOECs):Towards enhanced performance and large-scale sustainable hydrogen production 被引量:1
2
作者 Amina Lahrichi Youness El Issmaeli +1 位作者 Shankara S.Kalanur Bruno G.Pollet 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期688-715,共28页
Solid oxide electrolysis cells(SOECs)represent a crucial stride toward sustainable hydrogen generation,and this review explores their current scientific challenges,significant advancements,and potential for large-scal... Solid oxide electrolysis cells(SOECs)represent a crucial stride toward sustainable hydrogen generation,and this review explores their current scientific challenges,significant advancements,and potential for large-scale hydrogen production.In SOEC technology,the application of innovative fabrication tech-niques,doping strategies,and advanced materials has enhanced the performance and durability of these systems,although degradation challenges persist,implicating the prime focus for future advancements.Here we provide in-depth analysis of the recent developments in SOEC technology,including Oxygen-SOECs,Proton-SOECs,and Hybrid-SOECs.Specifically,Hybrid-SOECs,with their mixed ionic conducting electrolytes,demonstrate superior efficiency and the concurrent production of hydrogen and oxygen.Coupled with the capacity to harness waste heat,these advancements in SOEC technology present signif-icant promise for pilot-scale applications in industries.The review also highlights remarkable achieve-ments and potential reductions in capital expenditure for future SOEC systems,while elaborating on the micro and macro aspects of sOECs with an emphasis on ongoing research for optimization and scal-ability.It concludes with the potential of SOEC technology to meet various industrial energy needs and its significant contribution considering the key research priorities to tackle the global energy demands,ful-fillment,and decarbonization efforts. 展开更多
关键词 Solid oxide electrolysis cells Proton-SOECs Oxygen-SoECs Hybrid-SOECs Intermediate-high temperature electrolysers Hydrogenproduction
下载PDF
Porous metal oxides in the role of electrochemical CO_(2) reduction reaction 被引量:1
3
作者 Ziqi Zhang Jinyun Xu +9 位作者 Yu Zhang Liping Zhao Ming Li Guoqiang Zhong Di Zhao Minjing Li Xudong Hu Wenju Zhu Chunming Zheng Xiaohong Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期373-398,I0009,共27页
The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous me... The global energy-related CO_(2) emissions have rapidly increased as the world economy heavily relied on fossil fuels.This paper explores the pressing challenge of CO_(2) emissions and highlights the role of porous metal oxide materials in the electrocatalytic reduction of CO_(2)(CO_(2)RR).The focus is on the development of robust and selective catalysts,particularly metal and metal-oxide-based materials.Porous metal oxides offer high surface area,enhancing the accessibility to active sites and improving reaction kinetics.The tunability of these materials allows for tailored catalytic behavior,targeting optimized reaction mechanisms for CO_(2)RR.The work also discusses the various synthesis strategies and identifies key structural and compositional features,addressing challenges like high overpotential,poor selectivity,and low stability.Based on these insights,we suggest avenues for future research on porous metal oxide materials for electrochemical CO_(2) reduction. 展开更多
关键词 CO_(2)reduction Carbon dioxide TRANSFORMATION Porous metal oxides ELECTROCATALYSIS
下载PDF
Phase-engineering modulation of Mn-based oxide cathode for constructing super-stable sodium storage 被引量:1
4
作者 Quanqing Zhao Ruru Wang +5 位作者 Ming Gao Bolin Liu Jianfeng Jia Haishun Wu Youqi Zhu Chuanbao Cao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期421-427,I0010,共8页
The Mn-based oxide cathode with enriched crystal phase structure and component diversity can provide the excellent chemistry structure for Na-ion batteries.Nevertheless,the broad application prospect is obstructed by ... The Mn-based oxide cathode with enriched crystal phase structure and component diversity can provide the excellent chemistry structure for Na-ion batteries.Nevertheless,the broad application prospect is obstructed by the sluggish Na^(+)kinetics and the phase transitions upon cycling.Herein,we establish the thermodynamically stable phase diagram of various Mn-based oxide composites precisely controlled by sodium content tailoring strategy coupling with co-doping and solid-state reaction.The chemical environment of the P2/P'3 and P2/P3 biphasic composites indicate that the charge compensation mechanism stems from the cooperative contribution of anions and cations.Benefiting from the no phase transition to scavenge the structure strain,P2/P'3 electrode can deliver long cycling stability(capacity retention of 73.8%after 1000 cycles at 10 C)and outstanding rate properties(the discharge capacity of 84.08 mA h g^(-1)at 20 C)than P2/P3 electrode.Furthermore,the DFT calculation demonstrates that the introducing novel P'3 phase can significantly regulate the Na^(+)reaction dynamics and modify the local electron configuration of Mn.The effective phase engineering can provide a reference for designing other high-performance electrode materials for Na-ion batteries. 展开更多
关键词 Sodium ion battery oxide cathode Phase engineering Phase diagram Na~+kinetic
下载PDF
Upcycling the spent graphite/LiCoO_(2) batteries for high-voltage graphite/LiCoPO_(4)-co-workable dual-ion batteries
5
作者 Miao Du Hongyan Lü +5 位作者 Kaidi Du Shuohang Zheng Xiaotong Wang Xiaotong Deng Ronghua Zeng Xinglong Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1745-1751,共7页
The worldwide proliferation of portable electronics has resulted in a dramatic increase in the number of spent lithium-ion batteries(LIBs).However,traditional recycling methods still have limitations because of such h... The worldwide proliferation of portable electronics has resulted in a dramatic increase in the number of spent lithium-ion batteries(LIBs).However,traditional recycling methods still have limitations because of such huge amounts of spent LIBs.Therefore,we proposed an ecofriendly and sustainable double recycling strategy to concurrently reuse the cathode(LiCoO_(2))and anode(graphite)materials of spent LIBs and recycled LiCoPO_(4)/graphite(RLCPG)in Li^(+)/PF^(-)_(6) co-de/intercalation dual-ion batteries.The recycle-derived dualion batteries of Li/RLCPG show impressive electrochemical performance,with an appropriate discharge capacity of 86.2 mAh·g^(-1) at25 mA·g^(-1) and 69%capacity retention after 400 cycles.Dual recycling of the cathode and anode from spent LIBs avoids wastage of resources and yields cathode materials with excellent performance,thereby offering an ecofriendly and sustainable way to design novel secondary batteries. 展开更多
关键词 RECYCLE lithium cobalt oxide lithium cobalt phosphate graphite dual-ion batteries spent lithium-ion batteries
下载PDF
Enhancing the stability of Ni Fe-layered double hydroxide nanosheet array for alkaline seawater oxidation by Ce doping 被引量:1
6
作者 Yongchao Yao Shengjun Sun +14 位作者 Hui Zhang Zixiao Li Chaoxin Yang Zhengwei Cai Xun He Kai Dong Yonglan Luo Yan Wang Yuchun Ren Qian Liu Dongdong Zheng Weihua Zhuang Bo Tang Xuping Sun Wenchuang(Walter)Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期306-312,共7页
Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability cau... Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability caused by detrimental chlorine chemistry.Herein,we present our recent discovery that the incorporation of Ce into Ni Fe layered double hydroxide nanosheet array on Ni foam(Ce-Ni Fe LDH/NF)emerges as a robust electrocatalyst for seawater oxidation.During the seawater oxidation process,CeO_(2)is generated,effectively repelling Cl^(-)and inhibiting the formation of Cl O-,resulting in a notable enhancement in the oxidation activity and stability of alkaline seawater.The prepared Ce-Ni Fe LDH/NF requires only overpotential of 390 m V to achieve the current density of 1 A cm^(-2),while maintaining long-term stability for 500 h,outperforming the performance of Ni Fe LDH/NF(430 m V,150 h)by a significant margin.This study highlights the effectiveness of a Ce-doping strategy in augmenting the activity and stability of materials based on Ni Fe LDH in seawater electrolysis for oxygen evolution. 展开更多
关键词 Ce doping NiFe layered double hydroxide Seawater oxidation Electrocatalysis Cl^(-) repulsion
下载PDF
Boosting oxygen reduction activity and CO_(2) resistance on bismuth ferrite-based perovskite cathode for low-temperature solid oxide fuel cells below 600℃ 被引量:1
7
作者 Juntao Gao Zhiyun Wei +5 位作者 Mengke Yuan Zhe Wang Zhe Lü Qiang Li Lingling Xu Bo Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期600-609,I0013,共11页
Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)... Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs. 展开更多
关键词 Low-temperature solid oxide fuel cell Perovskite cathode DFT calculations CO_(2) tolerance
下载PDF
Targeted regeneration and upcycling of spent graphite by defect‐driven tin nucleation
8
作者 Zhiheng Cheng Zhiling Luo +7 位作者 Hao Zhang Wuxing Zhang Wang Gao Yang Zhang Long Qie Yonggang Yao Yunhui Huang Kun Kelvin Fu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期91-103,共13页
The recycling of spent batteries has become increasingly important owing to their wide applications,abundant raw material supply,and sustainable development.Compared with the degraded cathode,spent anode graphite ofte... The recycling of spent batteries has become increasingly important owing to their wide applications,abundant raw material supply,and sustainable development.Compared with the degraded cathode,spent anode graphite often has a relatively intact structure with few defects after long cycling.Yet,most spent graphite is simply burned or discarded due to its limited value and inferior performance on using conventional recycling methods that are complex,have low efficiency,and fail in performance restoration.Herein,we propose a fast,efficient,and“intelligent”strategy to regenerate and upcycle spent graphite based on defect‐driven targeted remediation.Using Sn as a nanoscale healant,we used rapid heating(~50 ms)to enable dynamic Sn droplets to automatically nucleate around the surface defects on the graphite upon cooling owing to strong binding to the defects(~5.84 eV/atom),thus simultaneously achieving Sn dispersion and graphite remediation.As a result,the regenerated graphite showed enhanced capacity and cycle stability(458.9 mAh g^(−1) at 0.2 A g^(−1) after 100 cycles),superior to those of commercial graphite.Benefiting from the self‐adaption of Sn dispersion,spent graphite with different degrees of defects can be regenerated to similar structures and performance.EverBatt analysis indicates that targeted regeneration and upcycling have significantly lower energy consumption(~99%reduction)and near‐zero CO_(2) emission,and yield much higher profit than hydrometallurgy,which opens a new avenue for direct upcycling of spend graphite in an efficient,green,and profitable manner for sustainable battery manufacture. 展开更多
关键词 battery recycling spent graphite targeted regeneration upcycling graphite
下载PDF
Recycled graphite for more sustainable lithium-ion batteries
9
作者 Mayokun Olutogun Anna Vanderbruggen +5 位作者 Christoph Frey Martin Rudolph Dominic Bresser Stefano Passerini Helmholtz Institute Ulm(HIU) Ulm 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期15-24,共10页
The demand for lithium-ion batteries(LIBs)is driven largely by their use in electric vehicles,which is projected to increase dramatically in the future.This great success,however,urgently calls for the efficient recyc... The demand for lithium-ion batteries(LIBs)is driven largely by their use in electric vehicles,which is projected to increase dramatically in the future.This great success,however,urgently calls for the efficient recycling of LIBs at the end of their life.Herein,we describe a froth flotation-based process to recycle graphite—the predominant active material for the negative electrode—from spent LIBs and investigate its reuse in newly assembled LIBs.It has been found that the structure and morphology of the recycled graphite are essentially unchanged compared to pristine commercial anode-grade graphite,and despite some minor impurities from the recycling process,the recycled graphite provides a remarkable reversible specific capacity of more than 350 mAh g^(−1).Even more importantly,newly assembled graphite‖NMC532 cells show excellent cycling stability with a capacity retention of 80%after 1000 cycles,that is,comparable to the performance of reference full cells comprising pristine commercial graphite. 展开更多
关键词 ANODE graphite lithium-ion battery RECYCLING SUSTAINABILITY
下载PDF
Aggregation-regulated bioreduction process of graphene oxide by Shewanella bacteria
10
作者 Kaixin Han Yibo Zeng +2 位作者 Yinghua Lu Ping Zeng Liang Shen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期56-62,共7页
The bioreduction of graphene oxide(GO)using environmentally functional bacteria such as Shewanella represents a green approach to produce reduced graphene oxide(rGO).This process differs from the chemical reduction th... The bioreduction of graphene oxide(GO)using environmentally functional bacteria such as Shewanella represents a green approach to produce reduced graphene oxide(rGO).This process differs from the chemical reduction that involves instantaneous molecular reactions.In bioreduction,the contact of bacterial cells and GO is considered the rate-limiting step.To reveal how the bacteria-GO integration regulates rGO production,the comparative experiments of GO and three Shewanella strains were carried out.Fourier-transform infrared spectroscopy,X-ray photoelectron spectroscopy,Raman spectroscopy,and atomic force microscopy were used to characterize the reduction degree and the aggregation degree.The results showed that a spontaneous aggregation of GO and Shewanella into the condensed entity occurred within 36 h.A positive linear correlation was established,linking three indexes of the aggregation potential,the bacterial reduction ability,and the reduction degree(ID/IG)comprehensively. 展开更多
关键词 Graphene oxide Reduced graphene oxide BIOREDUCTION AGGREGATION SHEWANELLA
下载PDF
Growth kinetics of titanium carbide coating by molten salt synthesis process on graphite sheet surface
11
作者 Xiaoyu Shi Chongxiao Guo +4 位作者 Jiamiao Ni Songsong Yao Liqiang Wang Yue Liu Tongxiang Fan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第8期1858-1864,共7页
The synthesis of carbide coatings on graphite substrates using molten salt synthesis(MSS),has garnered significant interest due to its cost-effective nature.This study investigates the reaction process and growth kine... The synthesis of carbide coatings on graphite substrates using molten salt synthesis(MSS),has garnered significant interest due to its cost-effective nature.This study investigates the reaction process and growth kinetics involved in MSS,shedding light on key aspects of the process.The involvement of Ti powder through liquid-phase mass transfer is revealed,where the diffusion distance and quantity of Ti powder play a crucial role in determining the reaction rate by influencing the C content gradient on both sides of the carbide.Furthermore,the growth kinetics of the carbide coating are predominantly governed by the diffusion behavior of C within the carbide layer,rather than the chemical reaction rate.To analyze the kinetics,the thickness of the carbide layer is measured with respect to heat treatment time and temperature,unveiling a parabolic relationship within the temperature range of 700-1300℃.The estimated activation energy for the reaction is determined to be 179283 J·mol^(-1).These findings offer valuable insights into the synthesis of carbide coatings via MSS,facilitating their optimization and enhancing our understanding of their growth mechanisms and properties for various applications. 展开更多
关键词 titanium carbide graphite molten salt kinetic analysis
下载PDF
Spent graphite regeneration:Exploring diverse repairing manners with impurities-catalyzing effect towards high performance and low energy consumption
12
作者 Yu Dong Zihao Zeng +7 位作者 Zhengqiao Yuan Bing Wang Hai Lei Wenqing Zhao Wuyun Ai Lingchao Kong Yue Yang Peng Ge 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期656-669,共14页
Spent battery recycling has received considerable attention because of its economic and environmental potential.A large amount of retired graphite has been produced as the main electrode material,accompanied by a deta... Spent battery recycling has received considerable attention because of its economic and environmental potential.A large amount of retired graphite has been produced as the main electrode material,accompanied by a detailed exploration of the repair mechanism.However,they still suffer from unclear repair mechanisms and physicochemical evolution.In this study,spent graphite was repaired employing three methodologies:pickling-sintering,pyrogenic-recovery,and high-temperature sintering.Owing to the catalytic effect of the metal-based impurities and temperature control,the as-obtained samples displayed an ordered transformation,including the interlayer distance,crystalline degree,and grain size.As anodes of lithium ions batteries,the capacity of repaired samples reached up to 310 mA h g^(-1)above after 300loops at 1.0 C,similar to that of commercial graphite.Meanwhile,benefitting from the effective assembly of carbon atoms in internal structure of graphite at>1400℃,their initial coulombic efficiency were>87%.Even at 2.0 C,the capacity of samples remained approximately 244 mA h g^(-1)after 500 cycles.Detailed electrochemical and kinetic analyses revealed that a low temperature enhanced the isotropy,thereby enhancing the rate properties.Further,economic and environmental analyses revealed that the revenue obtained through suitable pyrogenic-recovering manners was approximately the largest value(5500$t^(-1)).Thus,this study is expected to clarify the in-depth effect of different repair methods on the traits of graphite,while offering all-round evaluations of repaired graphite. 展开更多
关键词 Spent graphite regeneration REPAIR Temperature treatment
下载PDF
An efficient recycling strategy to eliminate the residual“impurities”while heal the damaged structure of spent graphite anodes
13
作者 Dan Yang Ying Yang +7 位作者 Haoran Du Yongsheng Ji Mingyuan Ma Yujun Pan Xiaoqun Qi Quan Sun Kaiyuan Shi Long Qie 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第6期1027-1034,共8页
The recycling of graphite from spent lithium-ion batteries(LIBs)is overlooked due to its relatively low added value and the lack of efficient recovering methods.To reuse the spent graphite anodes,we need to eliminate ... The recycling of graphite from spent lithium-ion batteries(LIBs)is overlooked due to its relatively low added value and the lack of efficient recovering methods.To reuse the spent graphite anodes,we need to eliminate their useless components(mainly the degraded solid electrolyte interphase,SEI)and reconstruct their damaged structure.Herein,a facile and efficient strategy is proposed to recycle the spent graphite on the basis of the careful investigation of the composition of the cycled graphite anodes and the rational design of the regeneration processes.The regenerated graphite,which is revitalized by calcination treatment and acid leaching,delivers superb rate performance and a high specific capacity of 370 mAh g^(-1)(~99% of its theoretical capacity)after 100 cycles at 0.1 C,superior to the commercial graphite anodes.The improved electrochemical performance could be attributed to unchoked Li^(+) transport channels and enhanced charge transfer reaction due to the effective destruction of the degraded SEI and the full recovery of the damaged structure of the spent graphite.This work clarifies that the electrochemical performance of the regenerated graphite could be deteriorated by even a trace amount of the residual“impurity”and provides a facile method for the efficient regeneration of graphite anodes. 展开更多
关键词 graphite ANODE REGENERATION Solid electrolyte interphase Spent lithium-ion battery
下载PDF
Edge and lithium concentration effects on intercalation kinetics for graphite anodes
14
作者 Keming Zhu Denis Kramer Chao Peng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期337-347,I0009,共12页
Graphite interfaces are an important part of the anode in lithium-ion batteries(LIBs),significantly influencing Li intercalation kinetics.Graphite anodes adopt different stacking sequences depending on the concentrati... Graphite interfaces are an important part of the anode in lithium-ion batteries(LIBs),significantly influencing Li intercalation kinetics.Graphite anodes adopt different stacking sequences depending on the concentration of the intercalated Li ions.In this work,we performed first-principles calculations to comprehensively address the energetics and dynamics of Li intercalation and Li vacancy diffusion near the no n-basal edges of graphite,namely the armchair and zigzag-edges,at high Li concentration.We find that surface effects persist in stage-Ⅱ that bind Li strongly at the edge sites.However,the pronounced effect previously identified at the zigzag edge of pristine graphite is reduced in LiC_(12),penetrating only to the subsurface site,and eventually disappearing in LiC_(6).Consequently,the distinctive surface state at the zigzag edge significantly impacts and restrains the charging rate at the initial lithiation of graphite anodes,whilst diminishes with an increasing degree of lithiation.Longer diffusion time for Li hopping to the bulk site from either the zigzag edge or the armchair edge in LiC_(6) was observed during high state of charge due to charge repulsion.Effectively controlling Li occupation and diffusion kinetics at this stage is also crucial for enhancing the charge rate. 展开更多
关键词 graphite anode EDGE Interface Lithium-ion batteries Density functional theory
下载PDF
Preparation of Manganese Oxide and Its Adsorption Properties
15
作者 贺跃 王海峰 +4 位作者 YANG Pan WANG Song CHEN Xiaoliang YANG Chunyuan 王家伟 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期1031-1040,共10页
The in-situ oxidation of manganese sulfate solution with H2O_(2),sodium hypochlorite,potassium permanganate and oxygen as oxidants was investigated by means of SEM,EDS,XRD,BET and infrared analysis,and the effects of ... The in-situ oxidation of manganese sulfate solution with H2O_(2),sodium hypochlorite,potassium permanganate and oxygen as oxidants was investigated by means of SEM,EDS,XRD,BET and infrared analysis,and the effects of different oxidants on the morphology,phase composition,surface properties and specific surface area of manganese oxides were investigated.The experimental results show that the diameter of manganese oxide particles prepared with H_(2)O_(2)is the smallest,about 50 nm,and the specific surface area is the largest,63.8764 m^(2)/g.It has the advantages of abundant surface hydroxyl groups,no introduction of other impurities and large adsorption potential.It is most suitable to be used as an oxidant for oxidizing manganese sulfate solution to prepare manganese oxide by in-situ oxidation.Nano manganese oxide prepard by H_(2)O_(2)in-situ oxidation method is used as adsorbent to adsorb cobalt and nickel impurities in manganese sulfate.When the reaction pH is 6,the reaction time is 30min and the amount of adsorbent is 1.0 g,the adsorption rates of cobalt and nickel impurities in 100ml manganese sulfate solution are 97.59%and 97.67%,respectively.The residual amounts of cobalt and nickel meet the industrial process standard of first-class products(Co,Ni w/%≤0.005)of high-purity manganese sulfate(Hg/t4823-2015)for batteries.The study plays a guiding role in the preparation and regulation of manganese oxide,and provides a new method with high efficiency,purity and adsorbent availability for the preparation of high-purity manganese sulfate solution. 展开更多
关键词 manganese oxide in situ oxidation ADSORBENT regulation mechanism PHYSICAL chemical properties
下载PDF
Structure characterization of the oxide film on FGH96 superalloy powders with various oxidation degrees
16
作者 Yang Liu Yufeng Liu +6 位作者 Sha Zhang Lin Zhang Peng Zhang Shaorong Zhang Na Liu Zhou Li Xuanhui Qu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第9期2037-2047,共11页
The structure of the oxide film on FGH96 alloy powders significantly influences the mechanical properties of superalloys.In this study,FGH96 alloy powders with various oxygen contents were investigated using high-reso... The structure of the oxide film on FGH96 alloy powders significantly influences the mechanical properties of superalloys.In this study,FGH96 alloy powders with various oxygen contents were investigated using high-resolution transmission electron microscopy and atomic probe technology to elucidate the structure evolution of the oxide film.Energy dispersive spectrometer analysis revealed the presence of two distinct components in the oxide film of the alloy powders:amorphous oxide layer covering the γ matrix and amorphous oxide particles above the carbide.The alloying elements within the oxide layer showed a laminated distribution,with Ni,Co,Cr,and Al/Ti,which was attributed to the decreasing oxygen equilibrium pressure as oxygen diffused from the surface into the γ matrix.On the other hand,Ti enrichment was observed in the oxide particles caused by the oxidation and decomposition of the carbide phase.Comparative analysis of the oxide film with oxygen contents of 140,280,and 340 ppm showed similar element distributions,while the thickness of the oxide film varies approximately at 9,14,and 30 nm,respectively.These findings provide valuable insights into the structural analysis of the oxide film on FGH96 alloy powders. 展开更多
关键词 Ni-based superalloys surface structure oxide layer thickness oxidation behavior element distribution
下载PDF
Thermal fatigue and wear of compacted graphite iron brake discs with various thermomechanical properties
17
作者 Gui-quan Wang Zhuo Xu +2 位作者 Zhong-li Liu Xiang Chen Yan-xiang Li 《China Foundry》 SCIE EI CAS CSCD 2024年第3期248-256,共9页
The increase in payload capacity of trucks has heightened the demand for cost-effective yet high performance brake discs.In this work,the thermal fatigue and wear of compacted graphite iron brake discs were investigat... The increase in payload capacity of trucks has heightened the demand for cost-effective yet high performance brake discs.In this work,the thermal fatigue and wear of compacted graphite iron brake discs were investigated,aiming to provide an experimental foundation for achieving a balance between their thermal and mechanical properties.Compacted graphite iron brake discs with different tensile strengths,macrohardnesses,specific heat capacities and thermal diffusion coefficients were produced by changing the proportion and strength of ferrite.The peak temperature,pressure load and friction coefficient of compacted graphite iron brake discs were analyzed through inertia friction tests.The morphology of thermal cracks and 3D profiles of the worn surfaces were also discussed.It is found that the thermal fatigue of compacted graphite iron discs is determined by their thermal properties.A compacted graphite iron with the highest specific heat capacity and thermal diffusion coefficient exhibits optimal thermal fatigue resistance.Oxidization of the matrix at low temperatures significantly weakens the function of alloy strengthening in hindering the propagation of thermal cracks.Despite the reduced hardness,increasing the ferrite proportion can mitigate wear loss resulting from low disc temperatures and the absence of abrasive wear. 展开更多
关键词 compacted graphite iron brake disc thermomechanical properties thermal fatigue WEAR
下载PDF
Residual fluoride self-activated effect enabling upgraded utilization of recycled graphite anode
18
作者 Shuzhe Yang Qingqing Gao +7 位作者 Yukun Li Hongwei Cai Xiaodan Li Gaoxing Sun Shuxin Zhuang Yujin Tong Hao Luo Mi Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期24-31,I0002,共9页
Recycling graphite anode from spent lithium-ion batteries(SLIBs)is regarded as a crucial approach to promoting sustainable energy storage industry.However,the recycled graphite(RG)generally presents degraded structure... Recycling graphite anode from spent lithium-ion batteries(SLIBs)is regarded as a crucial approach to promoting sustainable energy storage industry.However,the recycled graphite(RG)generally presents degraded structure and performance.Herein,the residual fluoride self-activated effect is proposed for the upgraded utilization of RG.Simple and low-energy water immersion treatment not only widens the interlayer spacing,but also retains appropriate fluoride on the surface of RG.Theoretical analysis and experiments demonstrate that the residual fluoride can optimize Li~+migration and deposition kinetics,resulting in better Li~+intercalation/deintercalation in the interlayer and more stable Li metal plating/stripping on the surface of RG,As a result,the designed LFP||RG full cells achieve ultrahigh reversibility(~100%Coulombic efficiency),high capacity retention(67%after 200 cycles,0.85 N/P ratio),and commendable adaptability(stable cycling without short-circuiting,0.15 N/P ratio).The energy density is improved from 334 Wh kg^(-1)of 1.1 N/P ratio to 367 Wh kg^(-1)of 0.85 N/P ratio(total mass based on cathode and anode).The exploration of RG by residual fluoride self-activated effect achieves upgraded utilization beyond fresh commercial graphite and highlights a new strategy for efficient reuse of SLIBs. 展开更多
关键词 Spent lithium-ion batteries Recycled graphite anode FLUORIDE Self-activated effect Upgraded utilization
下载PDF
Protective Graphite Coating for Two-Dimensional Carbon/Carbon Composites
19
作者 Wei Shi Zhengyi Li +3 位作者 Xiaobing Xu Yingshui Yu Xiaofei Ding Heng Ju 《Fluid Dynamics & Materials Processing》 EI 2024年第1期97-108,共12页
Two-dimensional carbon/carbon(2D C/C)composites are a special class of carbon/carbon composites,generally obtained by combining resin-impregnated carbon fiber clothes,which are then cured and carbonized.This study dea... Two-dimensional carbon/carbon(2D C/C)composites are a special class of carbon/carbon composites,generally obtained by combining resin-impregnated carbon fiber clothes,which are then cured and carbonized.This study deals with the preparation of a protective coating for these materials.This coating,based on graphite,was prepared by the slurry method.The effect of graphite and phenolic resin powders with different weight ratios was examined.The results have shown that the coating slurry can fill the pores and cracks of the composite surface,thereby densifying the surface layer of the material.With the increase of the graphite powder/phenolic resin weight ratio,the coating density is enhanced while the coating surface flatness decreases;moreover,the protective ability of coating against erosion first increases(from 1:3 to 2:2)and then decreases(from 2:2 to 3:1).When the weight ratio is about 1:1,the coating for 2D C/C composites exhibits the best erosion resistance,which greatly aids these materials during gas quenching.In this case,the erosion rate is decreased by approximately 41.5%at the impact angle of 30°and 52.3%at normal impact,respectively.This can be attributed to the ability of the coating slurry to infiltrate into the substrate,thereby bonding the fibers together and increasing the compactness of the 2D C/C composites. 展开更多
关键词 Carbon/carbon composites graphite coating MICROSTRUCTURE erosion resistance
下载PDF
Probing the electric double layer structure at nitrogen-doped graphite electrodes by constant-potential molecular dynamics simulations
20
作者 Legeng Yu Nan Yao +5 位作者 Yu-Chen Gao Zhong-Heng Fu Bo Jiang Ruiping Li Cheng Tang Xiang Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期299-305,I0008,共8页
Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite ano... Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite anodes and EDL evolution with electrode potential are very lacking.Herein,a constant-potential molecular dynamics(CPMD)method is proposed to probe the EDL structure under working conditions,taking N-doped graphite electrodes and carbonate electrolytes as an example.An interface model was developed,incorporating the electrode potential and atom electronegativities.As a result,an insightful atomic scenario for the EDL structure under varied electrode potentials has been established,which unveils the important role of doping sites in regulating both the EDL structures and the following electrochemical reactions at the atomic level.Specifically,the negatively charged N atoms repel the anions and adsorb Li~+at high and low potentials,respectively.Such preferential adsorption suggests that Ndoped graphite can promote Li~+desolvation and regulate the location of Li~+deposition.This CPMD method not only unveils the mysterious function of N-doping from the viewpoint of EDL at the atomic level but also applies to probe the interfacial structure on other complicated electrodes. 展开更多
关键词 Lithium batteries graphite N-DOPING Electric double layer Molecular dynamics Constant potential method Electrode potential
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部